1. 导入包
import pandas as pd import matplotlib.pyplot as plt import matplotlib.ticker as ticker import matplotlib.gridspec as gridspec
2. 获得数据
file_id = \'1yM_F93NY4QkxjlKL3GzdcCQEnBiA2ltB\'‘Python学习交流群:748989764 ’ url = f\'https://drive.google.com/uc?id={file_id}\' df = pd.read_csv(url, index_col=0) df
数据长得是这样的:
3. 对数据做一些预处理
按照需要,对数据再做一些预处理,代码及效果如下:
home_df = df.copy() home_df = home_df.melt(id_vars = [\"date\", \"home_team_name\", \"away_team_name\"]) home_df[\"venue\"] = \"H\" home_df.rename(columns = {\"home_team_name\":\"team\", \"away_team_name\":\"opponent\"}, inplace = True) home_df.replace({\"variable\":{\"home_team_xG\":\"xG_for\", \"away_team_xG\":\"xG_ag\"}}, inplace = True)
away_df = df.copy() away_df = away_df.melt(id_vars = [\"date\", \"away_team_name\", \"home_team_name\"]) away_df[\"venue\"] = \"A\" away_df.rename(columns = {\"away_team_name\":\"team\", \"home_team_name\":\"opponent\"}, inplace = True) away_df.replace({\"variable\":{\"away_team_xG\":\"xG_for\", \"home_team_xG\":\"xG_ag\"}}, inplace = True)
df = pd.concat([home_df, away_df]).reset_index(drop = True)
df
4. 画图
# ---- Filter the data Y_for = df[(df[\"team\"] == \"Lazio\") & (df[\"variable\"] == \"xG_for\")][\"value\"].reset_index(drop = True) Y_ag = df[(df[\"team\"] == \"Lazio\") & (df[\"variable\"] == \"xG_ag\")][\"value\"].reset_index(drop = True) X_ = pd.Series(range(len(Y_for))) # ---- Compute rolling average Y_for = Y_for.rolling(window = 5, min_periods = 0).mean() # min_periods is for partial avg. Y_ag = Y_ag.rolling(window = 5, min_periods = 0).mean()
fig, ax = plt.subplots(figsize = (7,3), dpi = 200)
ax.plot(X_, Y_for)
ax.plot(X_, Y_ag)
使用matplotlib倒是可以快速把图画好了,但是太丑了。接下来进行优化。
4.1 优化:添加点
这里为每一个数据添加点
fig, ax = plt.subplots(figsize = (7,3), dpi = 200) # --- Remove spines and add gridlines ax.spines[\"left\"].set_visible(False) ax.spines[\"top\"].set_visible(False) ax.spines[\"right\"].set_visible(False) ax.grid(ls = \"--\", lw = 0.5, color = \"#4E616C\") # --- The data ax.plot(X_, Y_for, marker = \"o\") ax.plot(X_, Y_ag, marker = \"o\")
4.2 优化:设置刻度
fig, ax = plt.subplots(figsize = (7,3), dpi = 200) # --- Remove spines and add gridlines ax.spines[\"left\"].set_visible(False) ax.spines[\"top\"].set_visible(False) ax.spines[\"right\"].set_visible(False) ax.grid(ls = \"--\", lw = 0.25, color = \"#4E616C\") # --- The data ax.plot(X_, Y_for, marker = \"o\", mfc = \"white\", ms = 5) ax.plot(X_, Y_ag, marker = \"o\", mfc = \"white\", ms = 5) # --- Adjust tickers and spine to match the style of our grid ax.xaxis.set_major_locator(ticker.MultipleLocator(2)) # ticker every 2 matchdays xticks_ = ax.xaxis.set_ticklabels([x - 1 for x in range(0, len(X_) + 3, 2)]) # This last line outputs # [-1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35] # and we mark the tickers every two positions. ax.xaxis.set_tick_params(length = 2, color = \"#4E616C\", labelcolor = \"#4E616C\", labelsize = 6) ax.yaxis.set_tick_params(length = 2, color = \"#4E616C\", labelcolor = \"#4E616C\", labelsize = 6) ax.spines[\"bottom\"].set_edgecolor(\"#4E616C\")
4.3 优化:设置填充
fig, ax = plt.subplots(figsize = (7,3), dpi = 200)
Python学习交流群:748989764
# --- Remove spines and add gridlines ax.spines[\"left\"].set_visible(False) ax.spines[\"top\"].set_visible(False) ax.spines[\"right\"].set_visible(False) ax.grid(ls = \"--\", lw = 0.25, color = \"#4E616C\") # --- The data ax.plot(X_, Y_for, marker = \"o\", mfc = \"white\", ms = 5) ax.plot(X_, Y_ag, marker = \"o\", mfc = \"white\", ms = 5) # --- Fill between ax.fill_between(x = X_, y1 = Y_for, y2 = Y_ag, alpha = 0.5) # --- Adjust tickers and spine to match the style of our grid ax.xaxis.set_major_locator(ticker.MultipleLocator(2)) # ticker every 2 matchdays xticks_ = ax.xaxis.set_ticklabels([x - 1 for x in range(0, len(X_) + 3, 2)]) ax.xaxis.set_tick_params(length = 2, color = \"#4E616C\", labelcolor = \"#4E616C\", labelsize = 6) ax.yaxis.set_tick_params(length = 2, color = \"#4E616C\", labelcolor = \"#4E616C\", labelsize = 6) ax.spines[\"bottom\"].set_edgecolor(\"#4E616C\")
4.4 优化:设置填充颜色
1.当橙色线更高时,希望填充为橙色。但是上面的还无法满足,这里再优化一下.
fig, ax = plt.subplots(figsize = (7,3), dpi = 200) # --- Remove spines and add gridlines ax.spines[\"left\"].set_visible(False) ax.spines[\"top\"].set_visible(False) ax.spines[\"right\"].set_visible(False) ax.grid(ls = \"--\", lw = 0.25, color = \"#4E616C\") # --- The data ax.plot(X_, Y_for, marker = \"o\", mfc = \"white\", ms = 5) ax.plot(X_, Y_ag, marker = \"o\", mfc = \"white\", ms = 5) # --- Fill between # Identify points where Y_for > Y_ag pos_for = (Y_for > Y_ag) ax.fill_between(x = X_[pos_for], y1 = Y_for[pos_for], y2 = Y_ag[pos_for], alpha = 0.5) pos_ag = (Y_for <= Y_ag) ax.fill_between(x = X_[pos_ag], y1 = Y_for[pos_ag], y2 = Y_ag[pos_ag], alpha = 0.5) # --- Adjust tickers and spine to match the style of our grid ax.xaxis.set_major_locator(ticker.MultipleLocator(2)) # ticker every 2 matchdays xticks_ = ax.xaxis.set_ticklabels([x - 1 for x in range(0, len(X_) + 3, 2)]) ax.xaxis.set_tick_params(length = 2, color = \"#4E616C\", labelcolor = \"#4E616C\", labelsize = 6) ax.yaxis.set_tick_params(length = 2, color = \"#4E616C\", labelcolor = \"#4E616C\", labelsize = 6) ax.spines[\"bottom\"].set_edgecolor(\"#4E616C\")
上面的图出现异常,再修改一下:
X_aux = X_.copy() X_aux.index = X_aux.index * 10 # 9 aux points in between each match last_idx = X_aux.index[-1] + 1 X_aux = X_aux.reindex(range(last_idx)) X_aux = X_aux.interpolate() # --- Aux series for the xG created (Y_for) Y_for_aux = Y_for.copy() Y_for_aux.index = Y_for_aux.index * 10 last_idx = Y_for_aux.index[-1] + 1 Y_for_aux = Y_for_aux.reindex(range(last_idx)) Y_for_aux = Y_for_aux.interpolate() # --- Aux series for the xG conceded (Y_ag) Y_ag_aux = Y_ag.copy() Y_ag_aux.index = Y_ag_aux.index * 10 last_idx = Y_ag_aux.index[-1] + 1 Y_ag_aux = Y_ag_aux.reindex(range(last_idx)) Y_ag_aux = Y_ag_aux.interpolate() fig, ax = plt.subplots(figsize = (7,3), dpi = 200) # --- Remove spines and add gridlines ax.spines[\"left\"].set_visible(False) ax.spines[\"top\"].set_visible(False) ax.spines[\"right\"].set_visible(False) ax.grid(ls = \"--\", lw = 0.25, color = \"#4E616C\") # --- The data for_ = ax.plot(X_, Y_for, marker = \"o\", mfc = \"white\", ms = 5) ag_ = ax.plot(X_, Y_ag, marker = \"o\", mfc = \"white\", ms = 5) # --- Fill between for index in range(len(X_aux) - 1): # Choose color based on which line\'s on top if Y_for_aux.iloc[index + 1] > Y_ag_aux.iloc[index + 1]: color = for_[0].get_color() else: color = ag_[0].get_color() # Fill between the current point and the next point in pur extended series. ax.fill_between([X_aux[index], X_aux[index+1]], [Y_for_aux.iloc[index], Y_for_aux.iloc[index+1]], [Y_ag_aux.iloc[index], Y_ag_aux.iloc[index+1]], color=color, zorder = 2, alpha = 0.2, ec = None) # --- Adjust tickers and spine to match the style of our grid ax.xaxis.set_major_locator(ticker.MultipleLocator(2)) # ticker every 2 matchdays xticks_ = ax.xaxis.set_ticklabels([x - 1 for x in range(0, len(X_) + 3, 2)]) ax.xaxis.set_tick_params(length = 2, color = \"#4E616C\", labelcolor = \"#4E616C\", labelsize = 6) ax.yaxis.set_tick_params(length = 2, color = \"#4E616C\", labelcolor = \"#4E616C\", labelsize = 6) ax.spines[\"bottom\"].set_edgecolor(\"#4E616C\")
5. 把功能打包成函数
上面的样子都还不错啦,接下来把这些东西都打包成一个函数。方便后面直接出图。
def plot_xG_rolling(team, ax, window = 5, color_for = \"blue\", color_ag = \"orange\", data = df): \'\'\' This function creates a rolling average xG plot for a given team and rolling window. team (str): The team\'s name ax (obj): a Matplotlib axes. window (int): The number of periods for our rolling average. color_for (str): A hex color code for xG created. color_af (str): A hex color code for xG conceded. data (DataFrame): our df with the xG data. \'\'\' # -- Prepping the data home_df = data.copy() home_df = home_df.melt(id_vars = [\"date\", \"home_team_name\", \"away_team_name\"]) home_df[\"venue\"] = \"H\" home_df.rename(columns = {\"home_team_name\":\"team\", \"away_team_name\":\"opponent\"}, inplace = True) home_df.replace({\"variable\":{\"home_team_xG\":\"xG_for\", \"away_team_xG\":\"xG_ag\"}}, inplace = True) away_df = data.copy() away_df = away_df.melt(id_vars = [\"date\", \"away_team_name\", \"home_team_name\"]) away_df[\"venue\"] = \"A\" away_df.rename(columns = {\"away_team_name\":\"team\", \"home_team_name\":\"opponent\"}, inplace = True) away_df.replace({\"variable\":{\"away_team_xG\":\"xG_for\", \"home_team_xG\":\"xG_ag\"}}, inplace = True) df = pd.concat([home_df, away_df]).reset_index(drop = True) # ---- Filter the data Y_for = df[(df[\"team\"] == team) & (df[\"variable\"] == \"xG_for\")][\"value\"].reset_index(drop = True) Y_ag = df[(df[\"team\"] == team) & (df[\"variable\"] == \"xG_ag\")][\"value\"].reset_index(drop = True) X_ = pd.Series(range(len(Y_for))) if Y_for.shape[0] == 0: raise ValueError(f\"Team {team} is not present in the DataFrame\") # ---- Compute rolling average Y_for = Y_for.rolling(window = 5, min_periods = 0).mean() # min_periods is for partial avg. Y_ag = Y_ag.rolling(window = 5, min_periods = 0).mean() # ---- Create auxiliary series for filling between curves X_aux = X_.copy() X_aux.index = X_aux.index * 10 # 9 aux points in between each match last_idx = X_aux.index[-1] + 1 X_aux = X_aux.reindex(range(last_idx)) X_aux = X_aux.interpolate() # --- Aux series for the xG created (Y_for) Y_for_aux = Y_for.copy() Y_for_aux.index = Y_for_aux.index * 10 last_idx = Y_for_aux.index[-1] + 1 Y_for_aux = Y_for_aux.reindex(range(last_idx)) Y_for_aux = Y_for_aux.interpolate() # --- Aux series for the xG conceded (Y_ag) Y_ag_aux = Y_ag.copy() Y_ag_aux.index = Y_ag_aux.index * 10 last_idx = Y_ag_aux.index[-1] + 1 Y_ag_aux = Y_ag_aux.reindex(range(last_idx)) Y_ag_aux = Y_ag_aux.interpolate() # --- Plotting our data # --- Remove spines and add gridlines ax.spines[\"left\"].set_visible(False) ax.spines[\"top\"].set_visible(False) ax.spines[\"right\"].set_visible(False) ax.grid(ls = \"--\", lw = 0.25, color = \"#4E616C\") # --- The data for_ = ax.plot(X_, Y_for, marker = \"o\", mfc = \"white\", ms = 4, color = color_for) ag_ = ax.plot(X_, Y_ag, marker = \"o\", mfc = \"white\", ms = 4, color = color_ag) # --- Fill between for index in range(len(X_aux) - 1): # Choose color based on which line\'s on top if Y_for_aux.iloc[index + 1] > Y_ag_aux.iloc[index + 1]: color = for_[0].get_color() else: color = ag_[0].get_color() # Fill between the current point and the next point in pur extended series. ax.fill_between([X_aux[index], X_aux[index+1]], [Y_for_aux.iloc[index], Y_for_aux.iloc[index+1]], [Y_ag_aux.iloc[index], Y_ag_aux.iloc[index+1]], color=color, zorder = 2, alpha = 0.2, ec = None) # --- Ensure minimum value of Y-axis is zero ax.set_ylim(0) # --- Adjust tickers and spine to match the style of our grid ax.xaxis.set_major_locator(ticker.MultipleLocator(2)) # ticker every 2 matchdays xticks_ = ax.xaxis.set_ticklabels([x - 1 for x in range(0, len(X_) + 3, 2)]) ax.xaxis.set_tick_params(length = 2, color = \"#4E616C\", labelcolor = \"#4E616C\", labelsize = 6) ax.yaxis.set_tick_params(length = 2, color = \"#4E616C\", labelcolor = \"#4E616C\", labelsize = 6) ax.spines[\"bottom\"].set_edgecolor(\"#4E616C\") # --- Legend and team name Y_for_last = Y_for.iloc[-1] Y_ag_last = Y_ag.iloc[-1] # -- Add the team\'s name team_ = ax.text( x = 0, y = ax.get_ylim()[1] + ax.get_ylim()[1]/20, s = f\'{team}\', color = \"#4E616C\", va = \'center\', ha = \'left\', size = 7 ) # -- Add the xG created label for_label_ = ax.text( x = X_.iloc[-1] + 0.75, y = Y_for_last, s = f\'{Y_for_last:,.1f} xGF\', color = color_for, va = \'center\', ha = \'left\', size = 6.5 ) # -- Add the xG conceded label ag_label_ = ax.text( x = X_.iloc[-1] + 0.75, y = Y_ag_last, s = f\'{Y_ag_last:,.1f} xGA\', color = color_ag, va = \'center\', ha = \'left\', size = 6.5 )
6.测试函数
file_id = \'1yM_F93NY4QkxjlKL3GzdcCQEnBiA2ltB\' url = f\'https://drive.google.com/uc?id={file_id}\' df = pd.read_csv(url, index_col=0)
再设置更加丰富的颜色:
fig = plt.figure(figsize=(5, 8), dpi = 200, facecolor = \"#EFE9E6\") ax1 = plt.subplot(411, facecolor = \"#EFE9E6\") ax2 = plt.subplot(412, facecolor = \"#EFE9E6\") ax3 = plt.subplot(413, facecolor = \"#EFE9E6\") ax4 = plt.subplot(414, facecolor = \"#EFE9E6\") plot_xG_rolling(\"Sassuolo\", ax1, color_for = \"#00A752\", color_ag = \"black\", data = df) plot_xG_rolling(\"Lazio\", ax2, color_for = \"#87D8F7\", color_ag = \"#15366F\", data = df) plot_xG_rolling(\"Hellas Verona\", ax3, color_for = \"#153aab\", color_ag = \"#fdcf41\", data = df) plot_xG_rolling(\"Empoli\", ax4, color_for = \"#00579C\", color_ag = \"black\", data = df) plt.tight_layout()
来源:https://www.cnblogs.com/liuliumei/p/17033502.html
本站部分图文来源于网络,如有侵权请联系删除。