一、低配logging
日志总共分为以下五个级别,这个五个级别自下而上进行匹配 debug-->info-->warning-->error-->critical,默认最低级别为warning级别。
1.v1
import logging
logging.debug(\'调试信息\')
logging.info(\'正常信息\')
logging.warning(\'警告信息\')
logging.error(\'报错信息\')
logging.critical(\'严重错误信息\')
WARNING:root:警告信息
ERROR:root:报错信息
CRITICAL:root:严重错误信息
v1版本无法指定日志的级别;无法指定日志的格式;只能往屏幕打印,无法写入文件。因此可以改成下述的代码。
2.v2
import logging
# 日志的基本配置
logging.basicConfig(filename=\'access.log\',
format=\'%(asctime)s - %(name)s - %(levelname)s -%(module)s: %(message)s\',
datefmt=\'%Y-%m-%d %H:%M:%S %p\',
level=10)
logging.debug(\'调试信息\') # 10
logging.info(\'正常信息\') # 20
logging.warning(\'警告信息\') # 30
logging.error(\'报错信息\') # 40
logging.critical(\'严重错误信息\') # 50
可在logging.basicConfig()函数中可通过具体参数来更改logging模块默认行为,可用参数有:
- filename:用指定的文件名创建FiledHandler(后边会具体讲解handler的概念),这样日志会被存储在指定的文件中。
- filemode:文件打开方式,在指定了filename时使用这个参数,默认值为“a”还可指定为“w”。
- format:指定handler使用的日志显示格式。
- datefmt:指定日期时间格式。
- level:设置rootlogger(后边会讲解具体概念)的日志级别
- stream:用指定的stream创建StreamHandler。可以指定输出到sys.stderr,sys.stdout或者文件,默认为sys.stderr。若同时列出了filename和stream两个参数,则stream参数会被忽略。
format参数中可能用到的格式化串:
- %(name)s Logger的名字
- %(levelno)s 数字形式的日志级别
- %(levelname)s 文本形式的日志级别
- %(pathname)s 调用日志输出函数的模块的完整路径名,可能没有
- %(filename)s 调用日志输出函数的模块的文件名
- %(module)s 调用日志输出函数的模块名
- %(funcName)s 调用日志输出函数的函数名
- %(lineno)d 调用日志输出函数的语句所在的代码行
- %(created)f 当前时间,用UNIX标准的表示时间的浮 点数表示
- %(relativeCreated)d 输出日志信息时的,自Logger创建以 来的毫秒数
- %(asctime)s 字符串形式的当前时间。默认格式是 “2003-07-08 16:49:45,896”。逗号后面的是毫秒
- %(thread)d 线程ID。可能没有
- %(threadName)s 线程名。可能没有
- %(process)d 进程ID。可能没有
- %(message)s用户输出的消息
v2版本不能指定字符编码;只能往文件中打印。
3.v3
logging模块包含四种角色:logger、Filter、Formatter对象、Handler
- logger:产生日志的对象
- Filter:过滤日志的对象
- Formatter对象:可以定制不同的日志格式对象,然后绑定给不同的Handler对象使用,以此来控制不同的Handler的日志格式
- Handler:接收日志然后控制打印到不同的地方,FileHandler用来打印到文件中,StreamHandler用来打印到终端
\'\'\'
critical=50
error =40
warning =30
info = 20
debug =10
\'\'\'
import logging
# 1、logger对象:负责产生日志,然后交给Filter过滤,然后交给不同的Handler输出
logger = logging.getLogger(__file__)
# 2、Filter对象:不常用,略
# 3、Handler对象:接收logger传来的日志,然后控制输出
h1 = logging.FileHandler(\'t1.log\') # 打印到文件
h2 = logging.FileHandler(\'t2.log\') # 打印到文件
sm = logging.StreamHandler() # 打印到终端
# 4、Formatter对象:日志格式
formmater1 = logging.Formatter(\'%(asctime)s - %(name)s - %(levelname)s -%(module)s: %(message)s\',
datefmt=\'%Y-%m-%d %H:%M:%S %p\',)
formmater2 = logging.Formatter(\'%(asctime)s : %(message)s\',
datefmt=\'%Y-%m-%d %H:%M:%S %p\',)
formmater3 = logging.Formatter(\'%(name)s %(message)s\',)
# 5、为Handler对象绑定格式
h1.setFormatter(formmater1)
h2.setFormatter(formmater2)
sm.setFormatter(formmater3)
# 6、将Handler添加给logger并设置日志级别
logger.addHandler(h1)
logger.addHandler(h2)
logger.addHandler(sm)
# 设置日志级别,可以在两个关卡进行设置logger与handler
# logger是第一级过滤,然后才能到handler
logger.setLevel(30)
h1.setLevel(10)
h2.setLevel(10)
sm.setLevel(10)
# 7、测试
logger.debug(\'debug\')
logger.info(\'info\')
logger.warning(\'warning\')
logger.error(\'error\')
logger.critical(\'critical\')
二、高配logging
1.配置日志文件
以上三个版本的日志只是为了引出我们下面的日志配置文件
import os
import logging.config
# 定义三种日志输出格式 开始
standard_format = \'[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]\' \\
\'[%(levelname)s][%(message)s]\' # 其中name为getLogger()指定的名字;lineno为调用日志输出函数的语句所在的代码行
simple_format = \'[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s\'
id_simple_format = \'[%(levelname)s][%(asctime)s] %(message)s\'
# 定义日志输出格式 结束
logfile_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # log文件的目录,需要自定义文件路径 # atm
logfile_dir = os.path.join(logfile_dir, \'log\') # C:\\Users\\oldboy\\Desktop\\atm\\log
logfile_name = \'log.log\' # log文件名,需要自定义路径名
# 如果不存在定义的日志目录就创建一个
if not os.path.isdir(logfile_dir): # C:\\Users\\oldboy\\Desktop\\atm\\log
os.mkdir(logfile_dir)
# log文件的全路径
logfile_path = os.path.join(logfile_dir, logfile_name) # C:\\Users\\oldboy\\Desktop\\atm\\log\\log.log
# 定义日志路径 结束
# log配置字典
LOGGING_DIC = {
\'version\': 1,
\'disable_existing_loggers\': False,
\'formatters\': {
\'standard\': {
\'format\': standard_format
},
\'simple\': {
\'format\': simple_format
},
},
\'filters\': {}, # filter可以不定义
\'handlers\': {
# 打印到终端的日志
\'console\': {
\'level\': \'DEBUG\',
\'class\': \'logging.StreamHandler\', # 打印到屏幕
\'formatter\': \'simple\'
},
# 打印到文件的日志,收集info及以上的日志
\'default\': {
\'level\': \'INFO\',
\'class\': \'logging.handlers.RotatingFileHandler\', # 保存到文件
\'formatter\': \'standard\',
\'filename\': logfile_path, # 日志文件
\'maxBytes\': 1024 * 1024 * 5, # 日志大小 5M (*****)
\'backupCount\': 5,
\'encoding\': \'utf-8\', # 日志文件的编码,再也不用担心中文log乱码了
},
},
\'loggers\': {
# logging.getLogger(__name__)拿到的logger配置。如果\'\'设置为固定值logger1,则下次导入必须设置成logging.getLogger(\'logger1\')
\'\': {
# 这里把上面定义的两个handler都加上,即log数据既写入文件又打印到屏幕
\'handlers\': [\'default\', \'console\'],
\'level\': \'DEBUG\',
\'propagate\': False, # 向上(更高level的logger)传递
},
},
}
def load_my_logging_cfg():
logging.config.dictConfig(LOGGING_DIC) # 导入上面定义的logging配置
logger = logging.getLogger(__name__) # 生成一个log实例
logger.info(\'It works!\') # 记录该文件的运行状态
return logger
if __name__ == \'__main__\':
load_my_logging_cfg()
2.使用日志
import time
import logging
import my_logging # 导入自定义的logging配置
logger = logging.getLogger(__name__) # 生成logger实例
def demo():
logger.debug(\"start range... time:{}\".format(time.time()))
logger.info(\"中文测试开始。。。\")
for i in range(10):
logger.debug(\"i:{}\".format(i))
time.sleep(0.2)
else:
logger.debug(\"over range... time:{}\".format(time.time()))
logger.info(\"中文测试结束。。。\")
if __name__ == \"__main__\":
my_logging.load_my_logging_cfg() # 在你程序文件的入口加载自定义logging配置
demo()
三、Django日志配置文件
# logging_config.py
# 学习中遇到问题没人解答?小编创建了一个Python学习交流群:489111204
LOGGING = {
\'version\': 1,
\'disable_existing_loggers\': False,
\'formatters\': {
\'standard\': {
\'format\': \'[%(asctime)s][%(threadName)s:%(thread)d][task_id:%(name)s][%(filename)s:%(lineno)d]\'
\'[%(levelname)s][%(message)s]\'
},
\'simple\': {
\'format\': \'[%(levelname)s][%(asctime)s][%(filename)s:%(lineno)d]%(message)s\'
},
\'collect\': {
\'format\': \'%(message)s\'
}
},
\'filters\': {
\'require_debug_true\': {
\'()\': \'django.utils.log.RequireDebugTrue\',
},
},
\'handlers\': {
# 打印到终端的日志
\'console\': {
\'level\': \'DEBUG\',
\'filters\': [\'require_debug_true\'],
\'class\': \'logging.StreamHandler\',
\'formatter\': \'simple\'
},
# 打印到文件的日志,收集info及以上的日志
\'default\': {
\'level\': \'INFO\',
\'class\': \'logging.handlers.RotatingFileHandler\', # 保存到文件,自动切
\'filename\': os.path.join(BASE_LOG_DIR, \"xxx_info.log\"), # 日志文件
\'maxBytes\': 1024 * 1024 * 5, # 日志大小 5M
\'backupCount\': 3,
\'formatter\': \'standard\',
\'encoding\': \'utf-8\',
},
# 打印到文件的日志:收集错误及以上的日志
\'error\': {
\'level\': \'ERROR\',
\'class\': \'logging.handlers.RotatingFileHandler\', # 保存到文件,自动切
\'filename\': os.path.join(BASE_LOG_DIR, \"xxx_err.log\"), # 日志文件
\'maxBytes\': 1024 * 1024 * 5, # 日志大小 5M
\'backupCount\': 5,
\'formatter\': \'standard\',
\'encoding\': \'utf-8\',
},
# 打印到文件的日志
\'collect\': {
\'level\': \'INFO\',
\'class\': \'logging.handlers.RotatingFileHandler\', # 保存到文件,自动切
\'filename\': os.path.join(BASE_LOG_DIR, \"xxx_collect.log\"),
\'maxBytes\': 1024 * 1024 * 5, # 日志大小 5M
\'backupCount\': 5,
\'formatter\': \'collect\',
\'encoding\': \"utf-8\"
}
},
\'loggers\': {
# logging.getLogger(__name__)拿到的logger配置
\'\': {
\'handlers\': [\'default\', \'console\', \'error\'],
\'level\': \'DEBUG\',
\'propagate\': True,
},
# logging.getLogger(\'collect\')拿到的logger配置
\'collect\': {
\'handlers\': [\'console\', \'collect\'],
\'level\': \'INFO\',
}
},
}
# -----------
# 用法:拿到俩个logger
logger = logging.getLogger(__name__) # 线上正常的日志
collect_logger = logging.getLogger(\"collect\") # 领导说,需要为领导们单独定制领导们看的日志
来源:https://www.cnblogs.com/python1111/p/17161849.html
本站部分图文来源于网络,如有侵权请联系删除。