百木园-与人分享,
就是让自己快乐。

设计 | ClickHouse 分布式表实现数据同步

作者:吴帆 青云数据库团队成员

主要负责维护 MySQL 及 ClickHouse 产品开发,擅长故障分析,性能优化。

在多副本分布式 ClickHouse 集群中,通常需要使用 Distributed 表写入或读取数据,Distributed 表引擎自身不存储任何数据,它能够作为分布式表的一层透明代理,在集群内部自动开展数据的写入、分发、查询、路由等工作。

Distributed 表实现副本数据同步有两种方案:

  • Distributed + MergeTree
  • Distributed + ReplicateMergeTree
  • | Distributed + MergeTree

    在使用这种方案时 internal_replication 需要设为 false,向 Distributed 表写入数据,Distributed 表会将数据写入集群内的每个副本。Distributed 节点需要负责所有分片和副本的数据写入工作。

    file

    1. 集群配置

    <logical_consistency_cluster>
    <shard>
    <internal_replication>false</internal_replication>
    <replica>
    <host>shard1-repl1</host>
    <port>9000</port>
    </replica>
    <replica>
    <host>shard1-repl2</host>
    <port>9000</port>
    </replica>
    </shard>
    </logical_consistency_cluster>

    2. 数据写入

    CREATE TABLE test.t_local on cluster logical_consistency_cluster
    (
    EventDate DateTime,
    CounterID UInt32,
    UserID UInt32
    ) ENGINE MergeTree() PARTITION BY toYYYYMM(EventDate) ORDER BY (CounterID, EventDate) ;

    CREATE TABLE test.t_logical_Distributed on cluster logical_consistency_cluster
    (
    EventDate DateTime,
    CounterID UInt32,
    UserID UInt32
    )
    ENGINE = Distributed(logical_consistency_cluster, test, t_local, CounterID) ;

    INSERT INTO test.t_logical_Distributed VALUES (\'2019-01-16 00:00:00\', 1, 1),(\'2019-02-10 00:00:00\',2, 2),(\'2019-03-10 00:00:00\',3, 3)

    3. 数据查询

    # shard1-repl1

    SELECT *
    FROM test.t_local

    Query id: bd031554-b1e0-4fda-9ff8-1145ffae5b02

    ┌───────────EventDate──┬─CounterID─┬─UserID─┐
    │ 2019-03-10 00:00:00 │ 3 │ 3 │
    └─────────────────────┴───────────┴────────┘
    ┌───────────EventDate─┬─CounterID─┬─UserID─┐
    │ 2019-02-10 00:00:00 │ 2 │ 2 │
    └─────────────────────┴───────────┴────────┘
    ┌───────────EventDate─┬─CounterID─┬─UserID─┐
    │ 2019-01-16 00:00:00 │ 1 │ 1 │
    └─────────────────────┴───────────┴────────┘

    3 rows in set. Elapsed: 0.004 sec.

    ------------------------------------------

    # shard1-repl2

    SELECT *
    FROM test.t_local

    Query id: 636f7580-02e0-4279-bc9b-1f153c0473dc

    ┌───────────EventDate─┬─CounterID─┬─UserID─┐
    │ 2019-01-16 00:00:00 │ 1 │ 1 │
    └─────────────────────┴───────────┴────────┘
    ┌───────────EventDate─┬─CounterID─┬─UserID─┐
    │ 2019-03-10 00:00:00 │ 3 │ 3 │
    └─────────────────────┴───────────┴────────┘
    ┌───────────EventDate─┬─CounterID─┬─UserID─┐
    │ 2019-02-10 00:00:00 │ 2 │ 2 │
    └─────────────────────┴───────────┴────────┘

    3 rows in set. Elapsed: 0.005 sec.

    通过写入测试我们可以看到每个副本数据是一致的。

    即使本地表不使用 ReplicatedMergeTree 表引擎,也能实现数据副本的功能。但每个副本的数据是通过 Distributed 表独立写入,文件存储格式不会完全一致,可以理解这种方式为逻辑一致性。

    Distributed 需要同时负责分片和副本的数据写入工作,单点写入很有可能会成为系统性能的瓶颈,所有有接下来的第二种方案。

    | Distributed + ReplicateMergeTree

    在使用这种方案时 internal_replication 需要设为 true,向 Distributed 表写入数据。Distributed 表在每个分片中选择一个合适的副本并对其写入数据。

    分片内多个副本之间的数据复制会由 ReplicatedMergeTree 自己处理,不再由 Distributed 负责。

    file

    1. 配置文件

    <physical_consistency_cluster>
    <shard>
    <internal_replication>true</internal_replication>
    <replica>
    <host>shard1-repl1</host>
    <port>9000</port>
    </replica>
    <replica>
    <host>shard1-repl2</host>
    <port>9000</port>
    </replica>
    </shard>
    </physical_consistency_cluster>

    2. 数据写入

    CREATE TABLE test.t_local on cluster physical_consistency_cluster
    (
    EventDate DateTime,
    CounterID UInt32,
    UserID UInt32
    )
    ENGINE = ReplicatedMergeTree(\'{namespace}/test/t_local\', \'{replica}\')
    PARTITION BY toYYYYMM(EventDate)
    ORDER BY (CounterID, EventDate, intHash32(UserID))
    SAMPLE BY intHash32(UserID);

    CREATE TABLE test.t_physical_Distributed on cluster physical_consistency_cluster
    (
    EventDate DateTime,
    CounterID UInt32,
    UserID UInt32
    )
    ENGINE = Distributed(physical_consistency_cluster, test, t_local, CounterID);

    INSERT INTO test.t_physical_Distributed VALUES (\'2019-01-16 00:00:00\', 1, 1),(\'2019-02-10 00:00:00\',2, 2),(\'2019-03-10 00:00:00\',3, 3)

    3. 数据查询

    # shard1-repl1

    SELECT *
    FROM test.t_local

    Query id: d2bafd2d-d0a8-41b4-8d79-ece37e8159e5

    ┌───────────EventDate──┬─CounterID─┬─UserID─┐
    │ 2019-03-10 00:00:00 │ 3 │ 3 │
    └─────────────────────┴───────────┴────────┘
    ┌───────────EventDate─┬─CounterID─┬─UserID─┐
    │ 2019-02-10 00:00:00 │ 2 │ 2 │
    └─────────────────────┴───────────┴────────┘
    ┌───────────EventDate─┬─CounterID─┬─UserID─┐
    │ 2019-01-16 00:00:00 │ 1 │ 1 │
    └─────────────────────┴───────────┴────────┘

    3 rows in set. Elapsed: 0.004 sec.

    ------------------------------------------

    # shard1-repl2

    SELECT *
    FROM test.t_local

    Query id: b5f0dc80-f73f-427e-b04e-e5b787876462

    ┌───────────EventDate─┬─CounterID─┬─UserID─┐
    │ 2019-01-16 00:00:00 │ 1 │ 1 │
    └─────────────────────┴───────────┴────────┘
    ┌───────────EventDate─┬─CounterID─┬─UserID─┐
    │ 2019-03-10 00:00:00 │ 3 │ 3 │
    └─────────────────────┴───────────┴────────┘
    ┌───────────EventDate─┬─CounterID─┬─UserID─┐
    │ 2019-02-10 00:00:00 │ 2 │ 2 │
    └─────────────────────┴───────────┴────────┘

    3 rows in set. Elapsed: 0.005 sec.

    ReplicatedMergeTree 需要依靠 ZooKeeper 的事件监听机制以实现各个副本之间的协同,副本协同的核心流程主要有:INSERT、MERGE、MUTATION 和 ALTER 四种。

    通过写入测试我们可以看到每个副本数据也是一致的,副本之间依靠 ZooKeeper 同步元数据,保证文件存储格式完全一致,可以理解这种方式是物理一致。

    ReplicatedMergeTree 也是在分布式集群中最常用的一种方案,但数据同步需要依赖 ZooKeeper,在一些 DDL 比较频繁的业务中 Zookeeper 往往会成为系统性能的瓶颈,甚至会导致服务不可用。

    我们需要考虑为 ZooKeeper 减负,使用第一种方案 + 负载均衡轮询的方式可以降低单节点写入的压力。

    总结

    • internal_replication = false

    使用 Distributed + MergeTree 可实现逻辑一致分布式。

    数据内容完全一致,数据存储格式不完全一致,数据同步不依赖 ZooKeeper,副本的数据可能会不一致,单点写入压力较大。

    • internal_replication = true

    使用 Distributed + ReplicateMergeTree 可实现物理一致分布式。

    数据内容完全一致,数据存储格式完全一致。数据同步需要依赖 ZooKeeper,ZooKeeper 会成为系统瓶颈。

    来源:https://www.cnblogs.com/radondb/p/15324859.html
    图文来源于网络,如有侵权请联系删除。

    未经允许不得转载:百木园 » 设计 | ClickHouse 分布式表实现数据同步

    相关推荐

    • 暂无文章