百木园-与人分享,
就是让自己快乐。

不要从“交互设计定理”入门交互设计

一、简单讲讲为什么

我相信大部分从别的领域(工业设计、UI或者其他领域)跨界进入交互设计的人,都至少拜读过一次“交互设计的7大定理”、“7个交互设计的法则”、“值得反复学习的5大定律”这类型文章。每篇这类型文章包含的定理都不太一样(比如“美即好用法则”、或者格式塔理论等等),但是下面这三个常驻成员,是每篇文章都一定会提到的:

  • 费茨定律(按钮大小和鼠标距离影响用户反应时间)
  • 席克定律(选项越多,用户反应时间越长)
  • 米勒定律(神奇的数字7±2 法则)

这些定理朗朗上口,似乎很可靠、很有道理、运用在工作中的例子也很丰富。但是我必须要开门见山的说:对于没有受过心理学或者社会科学训练的、不了解交互设计的基本工作方式和研究方法的同学来说,不要让“交互设计定理”作为你入门交互设计的第一印象。

这倒不是因为这些定理都是“错的”,相反,费茨定律从50年代提出以后,很长一段时间都是信息学和心理学交叉理论中的顶流,受到了后续很多实证研究的验证;而米勒定律截止2014年已经被引用超过2万次,不可为影响不深远。之所以说不建议交互新人上来就学习“定理”,是因为以下三个原因:

1. 过于简化

国内目前讲“定律”的文章,几乎没有能把这几个定律究竟在说什么讲得通透的。一般原理部分一笔带过,马上进入案例部分,去解读这几个原理在界面中的具体运用。

比如这篇讲费茨定律的文章介绍费茨的公式是T=a+blog2(D/W+1) ,其中:

T 是「移动到目标区域所需的时间」;D 是「距目标区域的距离」;W 是「目标区域的大小」;a、b都是常量,代表指点设备的物理特性,受操作人员和环境等因素而变化。

http://www.woshipm.com/pd/4383659.html

这篇文章比其他文章略好的地方是,讲清楚了这个公式中各个字母分别代表什么。但是仍然有很多的未解之谜是没说清楚,我猜测作者可能也没有去深究的:

  • 这个公式里有一个数学运算符“log”,这个log是怎么来的呢?为什么是以2为底数的呢?
  • (D/W+1)代表什么呢?为什么要这么计算呢?

好的建模或者好的公式对于阅读者来说是有意义、可以理解的,数字不会莫名其妙的发生复杂的作用,一代顶流费茨定律当然也不例外。假如作为设计师和研究者,我们并不理解这个定理作用的原因,就开始运用它或者用它来解释一些情况,相当于只是因为这个公式出名、有个英文名字就先入为主的认可了它,再去寻找那些设计上符合这个定理的蛛丝马迹,这是犯了“以果证因”的错误。

也许有人会讲我们做设计好像没必要接触这么精深的数学,但实际上50年代这两个研究发展之初,模型也好、数学运算也好,都是比较浅显易懂的,读到最后,上面所有提出的问题都能得到解答。

2. 历史局限

费茨、席克定律进入交互设计师必读清单的历史源远流长,早在人机交互界面诞生之前,计算机科学方兴未艾,学界便提倡作为计算机科学的研究员——软件开发者,也要通晓心理学的一些常识,从而能自主地提升自己设计的软件的可用性。从那时起,以费茨、席克定律为代表的心理学研究成果就进入了交互设计或者人机交互领域的视野。

这一方面说明人机交互从心理学借鉴研究成果的传统从很久以前就开始了,另一方面也说明:费茨、席克定律东西都是50年代就提出来的古董学说。就像设计有迭代和流行风潮一样,心理学研究也有风潮和迭代。

老的理论被新的研究证据证明或证伪、被新的研究视角挑战,这都是在学界不断发生的事情。比如上面提到的米勒定律,其实它从一开始提出来就不是很严肃、也没有很有力的推导过程,当前心理学相关领域的研究也倾向于认为人的短期记忆受多种因素影响,最终可能并不能以某个“数字”来作为阈值进行解释。

这就是学界的不断迭代的一个体现。

因此,作为应用者,我们需要在接触一个理论的结论时,具备评估这个理论的能力,充分了解它的历史局限性,从而自行选择接纳或者抛弃它。但这个能力对于交互新人来说,未免要求太高。

3. 太“安全”

这是我个人认为最主要的一个原因。对于那些不了解交互设计的人来说,“定理”这个词显得太权威、太让人有安全感了。实际上就像我这一篇基本功!交互嘎韭菜常见误区中略有提到的一样:社会科学的研究方式和自然科学是有差异的,影响人的感受(比如用户体验)的因素非常复杂,大多数时候你很难找到像自然科学里那样明显的、可观察到的、直接的因果关系,心理学或者社会科学的结论都是现实生活中情况的高度抽象。所以设计师很少会单纯因为有一个什么定理,而就能去支撑一个设计。

换句话说,自上而下地参考定理虽然能给交互设计提供有力的理论支持,但并不是交互设计师工作的常规方法。基于具体场景进行设计,然后抽象提炼出一定的规则(设计方法),也就是自下而上的工作方式,才是交互设计的初学者首先应该掌握的技能。

说完了为什么不建议学交互先学定理,本篇文章我们将以费茨、席克定律为例,来讲解作为设计师与研究者,我们应该怎样去看待这些心理学的研究成果。

二、费兹和席克定律

1. 信息论的源起

要了解费茨、席克定律究竟在讲什么,我们需要回溯到50年代的学界。彼时克劳德·香农刚刚提出信息论,创造性地将热力学中“熵”概念与信息通信领域结合,提出了“信息熵”的概念。在信息理论中,香农提出:“事物之间传递信息的过程,就是逐渐降低事物的不确定性的过程”。

比如说假如马戏团里有一个魔术师手里攥了一个号码牌,这个号码可能是1、2、3、4中随机一个数字,并让一个观众猜一下是哪个数字。此时由于魔术师和观众之间还没有进行任何交流,也就没有信息的互换,因此魔术师到底攥着什么号码这件事情总共有4种可能性或者不确定性。

但假如观众开口问魔术师:“请问你手里这个数字大于2吗?”魔术师回答“对。”那么此时他们之间就进行了一次信息的传递,并且魔术师手里号码牌数字的可能性被缩减到了3、4之间,事件的不确定性降低了。这位观众再次问魔术师:“请问数字大于3吗?”这次无论魔术师回答什么,观众都能确切地知道他手里的号码牌数字了:通过2次信息传递,事件不再具有任何不确定性。

请注意上面的观众问的2个问题,都可以用“是”或者“否”来回答,这样的问题叫做“是否”型问题。那么一个数字最少可以被多少个“是否”型问题猜出来呢?比如,当魔术师手持1、2两个号码牌时,观众只需要1个“是否”型问题就能猜出来;当他拿着1-8八个号码牌时,则观众需要3个“是否”问题才能猜出来,以此类推,最终可以算出:

不要从“交互设计定理”入门交互设计

因此,香农将a命名成了一个新的数据传输的单位“bit”,可以翻译成“位”,由它来衡量当所有事件发生概率相等时,一次交流传递的信息量。它同时也是我们所熟悉的二进制最小单位。比如回到我们之前的案例,观众猜魔法师手里1-4号码牌之前,有2位的信息不确定性;而当观众知道了确切的1个号码之后,信息不确定性=log2(1)=0位,因此可以说这次信息交流总共传递了2位的信息,也可以说观众排除了4件事情、2位的信息不确定性。

值得注意的是,当观众提出第一个问题的时候,将不确定性从4削减成了2,第二次询问则从2削减成了1,以此类推,所以实际上这个公式可以写成:

不要从“交互设计定理”入门交互设计


来源:http://www.woshipm.com/ucd/5344336.html
本站部分图文来源于网络,如有侵权请联系删除。

未经允许不得转载:百木园 » 不要从“交互设计定理”入门交互设计

相关推荐

  • 暂无文章