百木园-与人分享,
就是让自己快乐。

用Python图像识别技术打造一个小狗分类器,实现让机器自己去“学习”~

前言

今日给大家带来的是图像识别技术——小狗分类器
在这里插入图片描述

工具使用

开发环境:win10、python3.6
开发工具:pycharm
工具包 :keras,numpy, PIL

效果展示

训练集的准确率为0.925,但测试集只有0.7
说明过拟合了,可以再增加一些图片,或者使用数据增强,来减少过拟合。

图片

测试了两张图片,全都识别对了!

图片

思路分析

  • 1 准备数据集
  • 2 数据集的预处理
  • 3 搭建卷积神经网络
  • 4 训练
  • 5 预测

1、准备数据集

我们可以通过爬虫技术,把4类图像(京巴、拉布拉多、柯基、泰迪)保存到本地。总共有840张图片做训练集,188张图片做测试集。

2 数据集的预处理

1 统一尺寸为1001003(RGB彩色图像)

# 统一尺寸的核心代码
img = Image.open(img_path)
new_img = img.resize((100, 100), Image.BILINEAR)
new_img.save(os.path.join(\'./dog_kinds_after/\' + dog_name, jpgfile))

2 由于数据是自己下载的,需要制作标签(label),可提取图像名称的第一个数字作为类别。(重命名图片)

kind = 0

# 遍历京巴的文件夹
images = os.listdir(images_path)
for name in images:
image_path = images_path + \'/\'
os.rename(image_path + name, image_path + str(kind) +\'_\' + name.split(\'.\')[0]+\'.jpg\')

3 划分数据集

840张图片做训练集,188张图片做测试集。

4 把图片转换为网络需要的类型

# 只放了训练集的代码,测试集一样操作。
ima_train = os.listdir(\'./train\')

# 图片其实就是一个矩阵(每一个像素都是0-255之间的数)(100*100*3)
# 1.把图片转换为矩阵
def read_train_image(filename):
img = Image.open(\'./train/\' + filename).convert(\'RGB\')
return np.array(img)

x_train = []
# 2.把所有的图片矩阵放在一个列表里 (840, 100, 100, 3)
for i in ima_train:
x_train.append(read_train_image(i))
x_train = np.array(x_train)
# 3.提取kind类别作为标签
y_train = []
for filename in ima_train:
y_train.append(int(filename.split(\'_\')[0]))

# 标签(0/1/2/3)(840,)
y_train = np.array(y_train)

# 我是因为重命名图片为(1/2/3/4),所以都减了1
# 为了能够转化为独热矩阵
y_train = y_train - 1

# 4.把标签转换为独热矩阵
# 将类别信息转换为独热码的形式(独热码有利于神经网络的训练)
y_train = np_utils.to_categorical(y_train)
y_test = np_utils.to_categorical(y_test)
print(y_test)

x_train = x_train.astype(\'float32\')
x_test = x_test.astype(\'float32\')

x_train /= 255
x_test /= 255
print(x_train.shape) # (840, 100, 100, 3)
print(y_train.shape) # (840,)

3 搭建卷积神经网络

Keras是基于TensorFlow的深度学习库,是由纯Python编写而成的高层神经网络API,也仅支持Python开发。

它是为了支持快速实践而对Tensorflow的再次封装,让我们可以不用关注过多的底层细节,能够把想法快速转换为结果。

# 1.搭建模型(类似于VGG,直接拿来用就行)
model = Sequential()
# 这里搭建的卷积层共有32个卷积核,卷积核大小为3*3,采用relu的激活方式。
# input_shape,字面意思就是输入数据的维度。

#这里使用序贯模型,比较容易理解
#序贯模型就像搭积木一样,将神经网络一层一层往上搭上去

model.add(Conv2D(32, (3, 3), activation=\'relu\', input_shape=(100, 100, 3)))
model.add(Conv2D(32, (3, 3), activation=\'relu\'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Conv2D(64, (3, 3), activation=\'relu\'))
model.add(Conv2D(64, (3, 3), activation=\'relu\'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
#dropout层可以防止过拟合,每次有25%的数据将被抛弃

model.add(Flatten())
model.add(Dense(256, activation=\'relu\'))
model.add(Dropout(0.5))
model.add(Dense(4, activation=\'softmax\'))

4 训练

训练的过程,就是最优解的过程。

图片

对上图来说,就是根据数据集,不断的迭代,找到一条最近似的直线(y = kx + b),把参数k,b保存下来,预测的时候直接加载。

# 编译模型
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss=\'categorical_crossentropy\', optimizer=sgd, metrics=[\'accuracy\'])

# 一共进行32轮
# 也就是说840张图片,每次训练10张,相当于一共训练84次
model.fit(x_train, y_train, batch_size=10, epochs=32)

# 保存权重文件(也就是相当于“房价问题的k和b两个参数”)
model.save_weights(\'./dog_weights.h5\', overwrite=True)
# 评估模型
score = model.evaluate(x_test, y_test, batch_size=10)
print(score)

5 预测

此时k、b(参数)和x(小狗的图像)都是已知的了,求k(类别)就完了。

# 1.上传图片
name = input(\'上传图片的名称(例如:XX.jpg)为:\')

# 2.预处理图片(代码省略)

# 3.加载权重文件
model.load_weights(\'dog_weights.h5\')

# 4.预测类别
classes = model.predict_classes(x_test)[0]

target = [\'京巴\', \'拉布拉多\', \'柯基\', \'泰迪\']
# 3-泰迪 2-柯基 1-拉布拉多 0-京巴

# 5.打印结果
print(\"识别结果为:\" + target[classes])

文章到这里就结束了,感谢你的观看,Python数据分析系列,下个系列分享Python小技巧

为了感谢读者们,我想把我最近收藏的一些编程干货分享给大家,回馈每一个读者,希望能帮到你们。

干货主要有:

① 2000多本Python电子书(主流和经典的书籍应该都有了)

② Python标准库资料(最全中文版)

③ 项目源码(四五十个有趣且经典的练手项目及源码)

④ Python基础入门、爬虫、web开发、大数据分析方面的视频(适合小白学习)

⑤ Python学习路线图(告别不入流的学习)

⑥ 两天的Python爬虫训练营直播权限

All done~详见个人简介或者私信获取完整源代码。。

往期回顾

Python实现“假”数据

Python爬虫鲁迅先生《经典语录》

Python爬虫豆瓣热门话题

来源:https://www.cnblogs.com/tsp728/p/15161857.html
图文来源于网络,如有侵权请联系删除。

未经允许不得转载:百木园 » 用Python图像识别技术打造一个小狗分类器,实现让机器自己去“学习”~

相关推荐

  • 暂无文章