百木园-与人分享,
就是让自己快乐。

Python--Numpy简单了解

Python--Numpy简单了解

  • Numpy 高效的运算工具
  • Numpy的优势
  • ndarray属性
  • 基本操作
    • ndarray.方法()
    • numpy.函数名()
  • ndarray运算
    • 逻辑运算
    • 统计运算
    • 数组间运算
  • 合并、分割、IO操作、数据处理

1. Numpy优势

1.1 Numpy介绍 - 数值计算库

  • num - numerical 数值化的
  • py - python
  • ndarray
    • n - 任意个
    • d - dimension 维度
    • array - 数组

1.2 ndarray介绍

import numpy as np
score = np.array([[80, 89, 86, 67, 79],
[78, 97, 89, 67, 81],
[90, 94, 78, 67, 74],
[91, 91, 90, 67, 69],
[76, 87, 75, 67, 86],
[70, 79, 84, 67, 84],
[94, 92, 93, 67, 64],
[86, 85, 83, 67, 80]])

在这里插入图片描述

1.3 ndarray与Python原生list运算效率对比

import random
import time
# 生成一个大数组
python_list = []

for i in range(100000000):
python_list.append(random.random())
ndarray_list = np.array(python_list)

# 原生pythonlist求和
t1 = time.time()
a = sum(python_list)
t2 = time.time()
d1 = t2 - t1

# ndarray求和
t3 = time.time()
b = np.sum(ndarray_list)
t4 = time.time()
d2 = t4 - t3

d1= 0.7309620380401611
d2= 0.12980318069458008

1.4 ndarray的优势

  • 存储风格
    ndarray - 相同类型 - 通用性不强
    list - 不同类型 - 通用性很强
  • 并行化运算
    ndarray支持向量化运算
  • 底层语言
    C语言,解除了GIL
    在这里插入图片描述
  • 2. 认识N维数组-ndarray属性

    2.1 ndarray的属性

    • shape
      • ndim :看看维度
      • size :看看大小
    • dtype
      • itemsize :一个元素所占大小
    • 在创建ndarray的时候,如果没有指定类型
    • 默认
      • 整数 int64
      • 浮点数 float64

    array([[80, 89, 86, 67, 79],
    [78, 97, 89, 67, 81],
    [90, 94, 78, 67, 74],
    [91, 91, 90, 67, 69],
    [76, 87, 75, 67, 86],
    [70, 79, 84, 67, 84],
    [94, 92, 93, 67, 64],
    [86, 85, 83, 67, 80]])

    score.shape # (8, 5)
    score.ndim # 2
    score.size # 40
    score.dtype # dtype(\'int64\')
    score.itemsize # 8

    2.2 ndarray的形状

    a = np.array([[1,2,3],[4,5,6]])
    b = np.array([1,2,3,4])
    c = np.array([[[1,2,3],[4,5,6]],[[1,2,3],[4,5,6]]])

    a # array([[1, 2, 3],
    b # array([1, 2, 3, 4])
    c # array([[[1, 2, 3],[4, 5, 6]],[[1, 2, 3],[4, 5, 6]]])
    a.shape # (2, 3)
    b.shape # (4,)
    c.shape # (2, 2, 3)

    2.3 ndarray的类型

    type(score.dtype)
    <type \'numpy.dtype\'>

    # 指定类型
    # 创建数组的时候指定类型
    np.array([1.1, 2.2, 3.3], dtype=\"float32\")

    dtype是numpy是numpy.dtype类型,先看看对数组来说都有哪些类型

    名称
    描述
    简写
    np.bool 用一个字节存储的布尔类型(True或False) \'b\'
    np.int8 一个字节大小,-128~127 \'i\'
    np.int16 整数,-32768至32767 \'i2\'
    np.int32 整数,-231至232 -1 \'i4\'
    np.int64 整数,-263至263 -1 \'i8\'
    np.uint8 无符号整数,0~255 \'u\'
    np.uint16 无符号整数,0~65535 \'u2\'
    np.uint32 无符号整数,0~2 ** 32 -1 \'u4\'
    np.uint64 无符号整数,0~2 ** 64 -1 \'u8\'
    np.float16 半精度浮点数:16位, 正负号1位, 指数5位, 精度10位 \'f2\'
    np.float32 单精度浮点数:32位, 正负号1位, 指数8位, 精度23位 \'f4\'
    np.float64 双度浮点数:64位, 正负号1位, 指数11位, 精度52位 \'f8\'
    np.complex64 复数,分别用两个32位浮点数表示实部和虚部 \'c8\'
    np.complex128 复数,分别用两个64位浮点数表示实部和虚部 \'c16\'
    np.object_ python对象 \'O\'
    np.string 字符串 \'S\'
    np.unicode unicode类型 \'U\'

    3. 基本操作

    • adarray.方法()
    • np.函数名()
      • np.array()

    3.1 生成数组的方法

    3.1.1 生成0和1

    • np.zeros(shape)
    • np.ones(shape)

    # 1 生成0和1的数组
    np.zeros(shape=(3, 4), dtype=\"float32\")
    -----------------------------------------
    array([[0., 0., 0., 0.],
    [0., 0., 0., 0.],
    [0., 0., 0., 0.]], dtype=float32)

    np.ones(shape=[2, 3], dtype=np.int32)
    -----------------------------------------
    array([[1, 1, 1],
    [1, 1, 1]], dtype=int32)

    3.1.2 从现有数组中生成

    • np.array() np.copy() 深拷贝
    • np.asarray() 浅拷贝

    data1 = np.array(score)
    data2 = np.asarray(score)
    data3 = np.copy(score)
    score[3, 1] = 10000

    修改source,data2改变,data1,data3不改变

    3.1.3 生成固定范围的数组

    • np.linspace(0, 10, 100)

      • [0, 10] 等距离 生成个数
    • np.arange(a, b, c)

      • range(a, b, c)
        • [a, b) c是步长

    np.linspace(0, 10, 5)
    # array([ 0. , 2.5, 5. , 7.5, 10. ])
    np.arange(0, 11, 5)
    # array([ 0, 5, 10])

    3.1.4 生成随机数组

    分布状况 - 直方图

  • 均匀分布
    每组的可能性相等
  • 正态分布
    σ 幅度、波动程度、集中程度、稳定性、离散程度
    • 均匀分布uniform
      • low:float类型,此概率的均值(对应着整个分布的中心centre)
      • scale:float类型,此概率分布的标准差(对应于分布的宽度,scale越大越矮胖,越小越瘦高)
      • size:int or tuple of ints 输出的shape,默认位None,只输出一个值

    import matplotlib.pyplot as plt
    import numpy as np
    data1 = np.random.uniform(low=-1, high=1, size=1000000)
    array([-0.49795073, -0.28524454, 0.56473937, ..., 0.6141957 ,
    0.4149972 , 0.89473129])
    # 1、创建画布
    plt.figure(figsize=(20, 8), dpi=80)

    # 2、绘制直方图
    plt.hist(data1, 1000)

    # 3、显示图像
    plt.show()

    在这里插入图片描述

    • 正态分布normal
      • low:此概率的均值(对应着整个分布的中心centre)
      • scale:float此概率分布的标准差(对应于分布的宽度,scale越大越矮胖,越小越瘦高)
      • size:int or tuple of ints 输出的shape,默认位None,只输出一个值

    # 正态分布
    data2 = np.random.normal(loc=1.75, scale=0.1, size=1000000)
    # 1、创建画布
    plt.figure(figsize=(20, 8), dpi=80)

    # 2、绘制直方图
    plt.hist(data2, 1000)

    # 3、显示图像
    plt.show()

    在这里插入图片描述

    3.2 数组的索引、切片

    stock_change = np.random.normal(loc=0, scale=1, size=(8, 10))
    # 返回结果
    array([[-0.03469926, 1.68760014, 0.05915316, 2.4473136 , -0.61776756, -0.56253866, -1.24738637, 0.48320978, 1.01227938, -1.44509723],[-1.8391253 , -1.10142576, 0.09582268, 1.01589092, -1.20262068, 0.76134643, -0.76782097, -1.11192773, 0.81609586, 0.07659056],[-0.74293074, -0.7836588 , 1.32639574, -0.52735663, 1.4167841 , 2.10286726, -0.21687665, -0.33073563, -0.46648617, 0.07926839],[ 0.45914676, -0.78330377, -1.10763289, 0.10612596, -0.63375855,-1.88121415, 0.6523779 , -1.27459184, -0.1828502 , -0.76587891],[-0.50413407, -1.35848099, -2.21633535, -1.39300681, 0.13159471, 0.65429138, 0.32207255, 1.41792558, 1.12357799, -0.68599018],[ 0.3627785 , 1.00279706, -0.68137875, -2.14800075, -2.82895231,-1.69360338, 1.43816168, -2.02116677, 1.30746801, 1.41979011],[-2.93762047, 0.22199761, 0.98788788, 0.37899235, 0.28281886,-1.75837237, -0.09262863, -0.92354076, 1.11467277, 0.76034531],[-0.39473551, 0.28402164, -0.15729195, -0.59342945, -1.0311294 ,-1.07651428, 0.18618331, 1.5780439 , 1.31285558, 0.10777784]])

    # 获取第一个股票的前3个交易日的涨跌幅数据
    stock_change[0, :3]
    # 返回结果
    array([-0.03469926, 1.68760014, 0.05915316])

    一维、二维、三维的数组如何索引?

    # 三维,一维
    a1 = np.array([ [[1,2,3],[4,5,6]], [[12,3,34],[5,6,7]]])
    # 返回结果
    array([[[ 1, 2, 3],
    [ 4, 5, 6]],

    [[12, 3, 34],
    [ 5, 6, 7]]])
    # 索引、切片
    a1.shape # (2, 2, 3)
    a1[1, 0, 2] # 34

    # 修改
    a1[1, 0, 2] = 100000
    # 返回结果
    array([[[ 1, 2, 3],
    [ 4, 5, 6]],

    [[ 12, 3, 100000],
    [ 5, 6, 7]]])

    3.3 形状修改

    • ndarray.reshape(shape) 返回新的ndarray,原始数据没有改变
    • ndarray.resize(shape) 没有返回值,对原始的ndarray进行了修改
    • ndarray.T 转置 行变成列,列变成行
    • ndarray.reshape(shape)返回新的ndarray,原始数据没有改变

    # 需求:让刚才的股票行、日期列反过来,变成日期行,股票列
    stock_change
    # 返回结果
    array(
    [[-0.03469926, 1.68760014, 0.05915316, 2.4473136 , -0.61776756,
    -0.56253866, -1.24738637, 0.48320978, 1.01227938, -1.44509723],
    [-1.8391253 , -1.10142576, 0.09582268, 1.01589092, -1.20262068,
    0.76134643, -0.76782097, -1.11192773, 0.81609586, 0.07659056],
    [-0.74293074, -0.7836588 , 1.32639574, -0.52735663, 1.4167841 ,
    2.10286726, -0.21687665, -0.33073563, -0.46648617, 0.07926839],
    [ 0.45914676, -0.78330377, -1.10763289, 0.10612596, -0.63375855,
    -1.88121415, 0.6523779 , -1.27459184, -0.1828502 , -0.76587891],
    [-0.50413407, -1.35848099, -2.21633535, -1.39300681, 0.13159471,
    0.65429138, 0.32207255, 1.41792558, 1.12357799, -0.68599018],
    [ 0.3627785 , 1.00279706, -0.68137875, -2.14800075, -2.82895231,
    -1.69360338, 1.43816168, -2.02116677, 1.30746801, 1.41979011],
    [-2.93762047, 0.22199761, 0.98788788, 0.37899235, 0.28281886,
    -1.75837237, -0.09262863, -0.92354076, 1.11467277, 0.76034531],
    [-0.39473551, 0.28402164, -0.15729195, -0.59342945, -1.0311294 ,
    -1.07651428, 0.18618331, 1.5780439 , 1.31285558, 0.10777784]])

    stock_change.reshape((10, 8))
    # 返回结果
    array(
    [[-0.03469926, 1.68760014, 0.05915316, 2.4473136 , -0.61776756,
    -0.56253866, -1.24738637, 0.48320978],
    [ 1.01227938, -1.44509723, -1.8391253 , -1.10142576, 0.09582268,
    1.01589092, -1.20262068, 0.76134643],
    [-0.76782097, -1.11192773, 0.81609586, 0.07659056, -0.74293074,
    -0.7836588 , 1.32639574, -0.52735663],
    [ 1.4167841 , 2.10286726, -0.21687665, -0.33073563, -0.46648617,
    0.07926839, 0.45914676, -0.78330377],
    [-1.10763289, 0.10612596, -0.63375855, -1.88121415, 0.6523779 ,
    -1.27459184, -0.1828502 , -0.76587891],
    [-0.50413407, -1.35848099, -2.21633535, -1.39300681, 0.13159471,
    0.65429138, 0.32207255, 1.41792558],
    [ 1.12357799, -0.68599018, 0.3627785 , 1.00279706, -0.68137875,
    -2.14800075, -2.82895231, -1.69360338],
    [ 1.43816168, -2.02116677, 1.30746801, 1.41979011, -2.93762047,
    0.22199761, 0.98788788, 0.37899235],
    [ 0.28281886, -1.75837237, -0.09262863, -0.92354076, 1.11467277,
    0.76034531, -0.39473551, 0.28402164],
    [-0.15729195, -0.59342945, -1.0311294 , -1.07651428, 0.18618331,
    1.5780439 , 1.31285558, 0.10777784]])

    • ndarray.resize(shape)没有返回值,对原始的ndarray进行了修改

    stock_change.shape # (8, 10)
    stock_change.resize((10, 8))
    stock_change.shape # (10, 8)

    • ndarray.T转置 行变成列,列变成行

    stock_change.T

    3.4 类型修改

    • ndarray.astype(type)
    • ndarray序列化到本地
    • ndarray.tostring()

    stock_change.astype(\"int32\")
    # 返回结果
    array([[ 0, 1, 0, 2, 0, 0, -1, 0, 1, -1],
    [-1, -1, 0, 1, -1, 0, 0, -1, 0, 0],
    [ 0, 0, 1, 0, 1, 2, 0, 0, 0, 0],
    [ 0, 0, -1, 0, 0, -1, 0, -1, 0, 0],
    [ 0, -1, -2, -1, 0, 0, 0, 1, 1, 0],
    [ 0, 1, 0, -2, -2, -1, 1, -2, 1, 1],
    [-2, 0, 0, 0, 0, -1, 0, 0, 1, 0],
    [ 0, 0, 0, 0, -1, -1, 0, 1, 1, 0]], dtype=int32)

    stock_change.tobytes()
    b\'\\x95&\\x99\\xdd\\x19\\xc4\\xa1\\xbfm8\\x88\\x00i\\x00\\xfb?\\x92\\xbc\\x81\\xa1RI\\xae?\\xa2\\x95x&\\x19\\x94\\x03@\\x9f?\\xbev\\xc0\\xc4\\xe3\\xbf\\x87\\xf4H\\x13Q\\x00\\xe2\\xbf\\x9eM\\x85hK\\xf5\\xf3\\xbf\\x17mZ\\xb2\\xe8\\xec\\xde?U\\xca\\xd4\\xdbK2\\xf0?G\\xc6\\xbbD\\x1e\\x1f\\xf7\\xbf\\x9f-\\xb0\\xa5\\x0em\\xfd\\xbf\\x9b\\xd0h\\x9dp\\x9f\\xf1\\xbfyH\\x8e\\xc3\\xd5\\x87\\xb8?\\x1d\\x89v\\xd5\\x16A\\xf0?\\x89Aj-\\xef=\\xf3\\xbf\\xbc\\x8ea/\\xf3\\\\\\xe8?\\x94\\xb8\\xbaJ\\xfd\\x91\\xe8\\xbfv\\xc0\\x92\\xbct\\xca\\xf1\\xbf\\x82\\x82\\x19\\x11u\\x1d\\xea?\\xf2.\\x96Qp\\x9b\\xb3?g\\xed\\xef\\xb0\\x16\\xc6\\xe7\\xbf\\xf2\\xbf!\\x9c\\xbb\\x13\\xe9\\xbf\\x7fv\\x1e\\xbd\\xea8\\xf5?\\x1e \\x9d\\x02\\x1b\\xe0\\xe0\\xbf?\\x99O\\xce%\\xab\\xf6?\\x84;\\xb9\\x11\\xac\\xd2\\x00@p\\xe3\\xa07\\x9d\\xc2\\xcb\\xbfop\\x94\\xc4\\xc5*\\xd5\\xbfN\\x15)\\xca\\xe8\\xda\\xdd\\xbf4\\xa8\\x8b\\xf1\\xeeJ\\xb4?Qd\\x8e\\x1c\\xa9b\\xdd?\\xc8\\x92\\xb6\\x10\\xd3\\x10\\xe9\\xbf\\xf1\\x80\\x87C\\xdd\\xb8\\xf1\\xbf\\x18\\x02B \\x12+\\xbb?Xv\\xb4\\x02\\xc0G\\xe4\\xbf\\xa6,\\x8a\\x02t\\x19\\xfe\\xbf\\xb4\\xc9\\xaf\\x9cG\\xe0\\xe4?wCsj\\xbad\\xf4\\xbf\\xbc\\xb1\\xd5\\xa9\\xa2g\\xc7\\xbf\\xbc\\xc6\\x8d{\\x14\\x82\\xe8\\xbf>\\xf7\\xae\\xc6\\xdd!\\xe0\\xbf\\xacB\\x9c\\x90V\\xbc\\xf5\\xbfb\\xae\\xfa\\x06\\x0e\\xbb\\x01\\xc0_B\\xe1\\x82\\xc1I\\xf6\\xbfw\\x9f\\xb6m\\x18\\xd8\\xc0?\\x93\\xcb\\x8e{\\xf4\\xef\\xe4?\\xfe\\xc1\\xba,\\xd6\\x9c\\xd4?k\\x85)\\xbc\\xd2\\xaf\\xf6?{g\\x82\\xea,\\xfa\\xf1?s}\\xaf\\xad\\xa1\\xf3\\xe5\\xbfD(cM\\xc37\\xd7?(\\x1a\\xff\\xect\\x0b\\xf0?7e\\x80\\xce\\xda\\xcd\\xe5\\xbf\"\\xd5\\xe1\\x03\\x1b/\\x01\\xc0\\x94\\x85?\\xbf\\xb1\\xa1\\x06\\xc0w\\x08\\x14\\xdc\\xff\\x18\\xfb\\xbf\\x9f\\x1eL\\xd2\\xb5\\x02\\xf7?\\xb0-5{Y+\\x00\\xc0;\\xf5<\\x94c\\xeb\\xf4?a\\x8f\\xb1\\xd6u\\xb7\\xf6?%Kr)?\\x80\\x07\\xc0\\x9e\\x1c%\\xedjj\\xcc?F\\xa0C\\t\\xc7\\x9c\\xef?\\xf3\\xc3\\xfd\\x1eiA\\xd8?\\xcc\\x9e\\x84D\\xb4\\x19\\xd2?\\xdd$J\\x10K\"\\xfc\\xbf\\xe6E\\xb3\\x95\\x82\\xb6\\xb7\\xbf\\x0cN\\xa4Z\\xa5\\x8d\\xed\\xbf\\x96\\xdd\\xee\\x1c\\xb3\\xd5\\xf1?\\x05\\x8c\\x12\\xb0\\xbfT\\xe8?/\\xa5\\x1a\\xb9XC\\xd9\\xbf~Z!\\x1ci-\\xd2?\\x1f\\xe4\\xe3\\x83$\"\\xc4\\xbf_&\\xc5\\xc0_\\xfd\\xe2\\xbf\\xbf\\x16\\xac\\x8b\\x81\\x7f\\xf0\\xbf\\xf7\\xba)\\tg9\\xf1\\xbf\\xb7q\\x8c\\xd7\\xda\\xd4\\xc7?\\x98P\\xb7\\xf4\\xaa?\\xf9?\\x8c\\x98P\\xdbt\\x01\\xf5?t\\xd8 -T\\x97\\xbb?\'

    3.5 数组的去重

    • set():只能处理一维
    • np.unique()

    temp = np.array([[1, 2, 3, 4],[3, 4, 5, 6]])
    # 返回结果
    array([[1, 2, 3, 4],
    [3, 4, 5, 6]])
    np.unique(temp)
    # 返回结果
    array([1, 2, 3, 4, 5, 6])

    set(temp.flatten()) # 将多维降维成一维,然后用set去重 只能处理一维
    # 返回结果
    {1, 2, 3, 4, 5, 6}

    4. ndarray运算

    4.1 逻辑运算

    • 布尔索引
    • 通用判断函数
      • np.all(布尔值)
        • 只要有一个False就返回False,只有全是True才返回True
      • np.any()
        • 只要有一个True就返回True,只有全是False才返回False
    • np.where(三元运算符)
      • np.where(布尔值, True的位置的值, False的位置的值)

    stock_change = np.random.normal(loc=0, scale=1, size=(8, 10))
    # 返回结果
    array([[ 1.46338968, -0.45576704, 0.29667843, 0.16606916, 0.46446682,0.83167611, -1.35770374, -0.65001192, 1.38319911, -0.93415832],[ 0.36775845, 0.24078108, 0.122042 , 1.19314047, 1.34072589,0.09361683, 1.19030379, 1.4371421 , -0.97829363, -0.11962767],[-1.48252741, -0.69347186, 0.91122464, -0.30606473, 0.41598897,0.79542753, -0.01447862, -1.49943117, -0.23285809, 0.42806777],[ 0.39438905, -1.31770556, 1.7344868 , -1.52812773, -0.47703227,-0.3795497 , -0.88422651, 1.37510973, -0.93622775, 0.49257673],[-0.9822216 , -1.09482936, -0.81834523, 0.57335311, 0.97390091,0.05314952, -0.58316743, 0.19264426, 0.02081861, 0.84445247],[ 0.41739964, -0.26826893, -0.70003442, -0.58593912, 0.86546709,-1.30304864, 0.05254567, -1.73976785, -0.43532247, 0.4760526 ],[-0.21739882, 0.52007085, -0.60160491, 0.57108639, 1.03303301,-0.69172579, 1.04716985, -0.22985706, -0.11125069, 0.87722923],[-0.183266 , 0.56273065, 0.29357786, -0.19343363, -1.54547303,-0.31977163, -0.00659025, 0.48160678, 0.88443604, -0.48456825]])
    --------------------------------------------------
    # 逻辑判断, 如果涨跌幅大于0.5就标记为True 否则为False
    stock_change > 0.5
    # 返回结果
    array([[ True, False, False, False, False, True, False, False, True,False],[False, False, False, True, True, False, True, True, False,False],[False, False, True, False, False, True, False, False, False,False],[False, False, True, False, False, False, False, True, False,False],[False, False, False, True, True, False, False, False, False,True],[False, False, False, False, True, False, False, False, False,False],[False, True, False, True, True, False, True, False, False,True],[False, True, False, False, False, False, False, False, True,False]])
    --------------------------------------------------
    stock_change[stock_change > 0.5] = 1.1
    # 返回结果
    array([[ 1.1 , -0.45576704, 0.29667843, 0.16606916, 0.46446682,1.1 , -1.35770374, -0.65001192, 1.1 , -0.93415832],[ 0.36775845, 0.24078108, 0.122042 , 1.1 , 1.1 ,0.09361683, 1.1 , 1.1 , -0.97829363, -0.11962767],[-1.48252741, -0.69347186, 1.1 , -0.30606473, 0.41598897,1.1 , -0.01447862, -1.49943117, -0.23285809, 0.42806777],[ 0.39438905, -1.31770556, 1.1 , -1.52812773, -0.47703227,-0.3795497 , -0.88422651, 1.1 , -0.93622775, 0.49257673],[-0.9822216 , -1.09482936, -0.81834523, 1.1 , 1.1 ,0.05314952, -0.58316743, 0.19264426, 0.02081861, 1.1 ],[ 0.41739964, -0.26826893, -0.70003442, -0.58593912, 1.1 ,-1.30304864, 0.05254567, -1.73976785, -0.43532247, 0.4760526 ],[-0.21739882, 1.1 , -0.60160491, 1.1 , 1.1 ,-0.69172579, 1.1 , -0.22985706, -0.11125069, 1.1 ],[-0.183266 , 1.1 , 0.29357786, -0.19343363, -1.54547303,-0.31977163, -0.00659025, 0.48160678, 1.1 , -0.48456825]])

    # 判断stock_change[0:2, 0:5]是否全是上涨的
    stock_change[0:2, 0:5] > 0
    # 返回结果
    array([[ True, False, True, True, True],
    [ True, True, True, True, True]])
    --------------------------------------------------
    np.all(stock_change[0:2, 0:5] > 0)
    # 返回结果
    False
    --------------------------------------------------
    # 判断前5只股票这段期间是否有上涨的
    np.any(stock_change[:5, :] > 0)
    # 返回结果
    True

    # 判断前四个股票前四天的涨跌幅 大于0的置为1,否则为0
    temp = stock_change[:4, :4]
    # 返回结果
    array([[ 1.1 , -0.45576704, 0.29667843, 0.16606916],
    [ 0.36775845, 0.24078108, 0.122042 , 1.1 ],
    [-1.48252741, -0.69347186, 1.1 , -0.30606473],
    [ 0.39438905, -1.31770556, 1.1 , -1.52812773]])
    --------------------------------------------------
    np.where(temp > 0, 1, 0)
    # 返回结果
    array([[1, 0, 1, 1],
    [1, 1, 1, 1],
    [0, 0, 1, 0],
    [1, 0, 1, 0]])
    --------------------------------------------------
    temp > 0
    # 返回结果
    array([[ True, False, True, True],
    [ True, True, True, True],
    [False, False, True, False],
    [ True, False, True, False]])
    --------------------------------------------------
    np.where([[ True, False, True, True],
    [ True, True, True, True],
    [False, False, True, False],
    [ True, False, True, False]], 1, 0)
    # 返回结果
    array([[1, 0, 1, 1],
    [1, 1, 1, 1],
    [0, 0, 1, 0],
    [1, 0, 1, 0]])
    --------------------------------------------------
    # 判断前四个股票前四天的涨跌幅 大于0.5并且小于1的,换为1,否则为0
    # 判断前四个股票前四天的涨跌幅 大于0.5或者小于-0.5的,换为1,否则为0
    # (temp > 0.5) and (temp < 1)
    np.logical_and(temp > 0.5, temp < 1)
    # 返回结果
    array([[False, False, False, False],
    [False, False, False, False],
    [False, False, False, False],
    [False, False, False, False]])
    --------------------------------------------------
    np.where([[False, False, False, False],
    [False, False, False, False],
    [False, False, False, False],
    [False, False, False, False]], 1, 0)
    # 返回结果
    array([[0, 0, 0, 0],
    [0, 0, 0, 0],
    [0, 0, 0, 0],
    [0, 0, 0, 0]])
    --------------------------------------------------
    np.where(np.logical_and(temp > 0.5, temp < 1), 1, 0)
    # 返回结果
    array([[0, 0, 0, 0],
    [0, 0, 0, 0],
    [0, 0, 0, 0],
    [0, 0, 0, 0]])
    --------------------------------------------------
    np.logical_or(temp > 0.5, temp < -0.5)
    # 返回结果
    array([[ True, False, False, False],
    [False, False, False, True],
    [ True, True, True, False],
    [False, True, True, True]])
    --------------------------------------------------
    np.where(np.logical_or(temp > 0.5, temp < -0.5), 11, 3)
    # 返回结果
    array([[11, 3, 3, 3],
    [ 3, 3, 3, 11],
    [11, 11, 11, 3],
    [ 3, 11, 11, 11]])

    4.2 统计运算

    axis轴的取值并不一定,Numpy中不同的API轴的值不一样,
    在这里,axis 0代表行,1代表列

    • 统计指标函数
      • min, max, mean, median, var, std
      • np.函数名
      • ndarray.方法名
    • 返回最大值、最小值所在位置
      • np.argmax(temp, axis=)
      • np.argmin(temp, axis=)

    # 前四只股票前四天的最大涨幅
    temp # shape: (4, 4) 0 1
    # 返回结果
    array([[ 1.1 , -0.45576704, 0.29667843, 0.16606916],
    [ 0.36775845, 0.24078108, 0.122042 , 1.1 ],
    [-1.48252741, -0.69347186, 1.1 , -0.30606473],
    [ 0.39438905, -1.31770556, 1.1 , -1.52812773]])
    --------------------------------------------------
    temp.max(axis=0)# 按列求最大值
    # 返回结果
    array([1.1 , 0.24078108, 1.1 , 1.1 ])
    --------------------------------------------------
    np.max(temp, axis=-1)
    # 返回结果
    array([1.1, 1.1, 1.1, 1.1])
    --------------------------------------------------
    np.argmax(temp, axis=-1)
    # 返回结果
    array([0, 3, 2, 2])

    5. 数组间运算

    5.1 场景

    在这里插入图片描述

    5.2 数组与数的运算

    • +-*/

    arr = np.array([[1, 2, 3, 2, 1, 4], [5, 6, 1, 2, 3, 1]])
    arr / 10
    # 返回结果
    array([[0.1, 0.2, 0.3, 0.2, 0.1, 0.4],
    [0.5, 0.6, 0.1, 0.2, 0.3, 0.1]])

    5.3 数组与数组的运算

    arr1 = np.array([[1, 2, 3, 2, 1, 4], [5, 6, 1, 2, 3, 1]])
    arr2 = np.array([[1, 2, 3, 4], [3, 4, 5, 6]])

    array([[1, 2, 3, 2, 1, 4],
    [5, 6, 1, 2, 3, 1]])

    5.4 广播机制

    执行broadcast的前提在于,两个ndarray执行的是element-wise的运算,Broadcast机制的功能是为了方便不同形状的ndarray(numpy库的核心数据结构)进行数学运算

    • 维度相等
    • shape(其中相对应的一个地方为1)
      广播的原则:如果两个数组的后缘维度(trailing dimension,即从末尾开始算起的维度)的轴长度相符,或其中的一方的长度为1,则认为它们是广播兼容的。广播会在缺失和(或)长度为1的维度上进行。

    5.5 矩阵运算

    1 什么是矩阵
    矩阵matrix 二维数组
    矩阵 & 二维数组
    两种方法存储矩阵
    1)ndarray 二维数组
    矩阵乘法:
    np.matmul
    np.dot
    2)matrix数据结构
    2 矩阵乘法运算
    形状
    (m, n) * (n, l) = (m, l)
    运算规则
    A (2, 3) B(3, 2)
    A * B = (2, 2)

    # ndarray存储矩阵
    data = np.array([[80, 86],
    [82, 80],
    [85, 78],
    [90, 90],
    [86, 82],
    [82, 90],
    [78, 80],
    [92, 94]])

    # matrix存储矩阵
    data_mat = np.mat([[80, 86],
    [82, 80],
    [85, 78],
    [90, 90],
    [86, 82],
    [82, 90],
    [78, 80],
    [92, 94]])
    type(data_mat)
    numpy.matrixlib.defmatrix.matrix

    data # (8, 2) * (2, 1) = (8, 1)
    np.matmul(data, weights)
    array([[84.2],
    [80.6],
    [80.1],
    [90. ],
    [83.2],
    [87.6],
    [79.4],
    [93.4]])
    np.dot(data, weights)
    array([[84.2],
    [80.6],
    [80.1],
    [90. ],
    [83.2],
    [87.6],
    [79.4],
    [93.4]])
    data_mat * weights_mat
    matrix([[84.2],
    [80.6],
    [80.1],
    [90. ],
    [83.2],
    [87.6],
    [79.4],
    [93.4]])
    data @ weights
    array([[84.2],
    [80.6],
    [80.1],
    [90. ],
    [83.2],
    [87.6],
    [79.4],
    [93.4]])

    6. 合并、分割

    6.1 合并

    • numpy.hstack(tup)
      在这里插入图片描述
    • numpy.vstack(tup)
      在这里插入图片描述
    • numpy.concatenate((a1, a2 , ...), axis=0)
      在这里插入图片描述

    a = stock_change[:2, 0:4]
    b = stock_change[4:6, 0:4]

    a
    array([[ 1.1 , -0.45576704, 0.29667843, 0.16606916],
    [ 0.36775845, 0.24078108, 0.122042 , 1.1 ]])

    a.shape # (2, 4)

    a.reshape((-1, 2))
    array([[ 1.1 , -0.45576704],
    [ 0.29667843, 0.16606916],
    [ 0.36775845, 0.24078108],
    [ 0.122042 , 1.1 ]])

    b
    array([[-0.9822216 , -1.09482936, -0.81834523, 1.1 ],
    [ 0.41739964, -0.26826893, -0.70003442, -0.58593912]])

    np.hstack((a, b))
    array([[ 1.1 , -0.45576704, 0.29667843, 0.16606916, -0.9822216 ,
    -1.09482936, -0.81834523, 1.1 ],
    [ 0.36775845, 0.24078108, 0.122042 , 1.1 , 0.41739964,
    -0.26826893, -0.70003442, -0.58593912]])

    np.concatenate((a, b), axis=1)
    array([[ 1.1 , -0.45576704, 0.29667843, 0.16606916, -0.9822216 ,
    -1.09482936, -0.81834523, 1.1 ],
    [ 0.36775845, 0.24078108, 0.122042 , 1.1 , 0.41739964,
    -0.26826893, -0.70003442, -0.58593912]])

    np.vstack((a, b))
    array([[ 1.1 , -0.45576704, 0.29667843, 0.16606916],
    [ 0.36775845, 0.24078108, 0.122042 , 1.1 ],
    [-0.9822216 , -1.09482936, -0.81834523, 1.1 ],
    [ 0.41739964, -0.26826893, -0.70003442, -0.58593912]])

    np.concatenate((a, b), axis=0)
    array([[ 1.1 , -0.45576704, 0.29667843, 0.16606916],
    [ 0.36775845, 0.24078108, 0.122042 , 1.1 ],
    [-0.9822216 , -1.09482936, -0.81834523, 1.1 ],
    [ 0.41739964, -0.26826893, -0.70003442, -0.58593912]])

    6.2 分割

    7. IO操作与数据处理

    7.1 Numpy读取

    data = np.genfromtxt(\"test.csv\", delimiter=\",\")

    array([[ nan, nan, nan, nan],
    [ 1. , 123. , 1.4, 23. ],
    [ 2. , 110. , nan, 18. ],

    7.2 如何处理缺失值

    两种思路:

    • 直接删除含有缺失值的样本
    • 替换/插补
      • 按列求平均,用平均值进行填补

    来源:https://www.cnblogs.com/Slience-me/p/15149756.html
    图文来源于网络,如有侵权请联系删除。

    未经允许不得转载:百木园 » Python--Numpy简单了解

    相关推荐

    • 暂无文章