- 最短路径问题是图论研究中的经典算法问题,用于计算图中一个顶点到另一个顶点的最短路径。
- 在图论中,最短路径长度与最短路径距离却是不同的概念和问题,经常会被混淆。
- 求最短路径长度的常用算法是 Dijkstra 算法、Bellman-Ford 算法和Floyd 算法,另外还有启发式算法 A*。
- 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人。
1. 最短路径问题
最短路径问题是图论研究中的经典算法问题,用于计算图中一个顶点到另一个顶点的最短路径。
最短路径问题有几种形式:确定起点的最短路径,确定终点的最短路径,确定起点和终点的最短路径,全局最短路径问题。
1.1 最短路径长度与最短路径距离
在日常生活中,最短路径长度与最短路径距离好像并没什么区别。但在图论中最短路径长度与最短路径距离却是不同的概念和问题,经常会被混淆。
图论中有无权图和有权图,无权图中的边没有权,赋权图的边带有权,可以表示距离、时间、费用或其它指标。在问题文字描述中,往往并不直接指出是无权图还是有权图,这时就要特别注意最短路径与最短加权路径的区别。
路径长度是把每个顶点到相邻顶点的长度记为 1,而不是指这两个顶点之间道路的距离——两个顶点之间的道路距离是 连接边的权(weight)。
通俗地说,路径长度可以认为是飞行棋的步数,或者公交站点的站数,相邻顶点之间为一步,相隔几个顶点就是几站。路径长度是从路径起点到终点的步数,计算最短路径是要计算从起点到终点步数最少的路径。
如果问题不涉及相邻顶点间的距离,要计算从起点到终点的最短路径及对应的最短路径长度,是指这条路径从起点到终点有几步(站),在图论中称为最短路径长度。但是,如果问题给出相邻顶点之间的道路长度或距离,姑且称为各路段的距离,要计算从起点到终点的最短路径及对应的最短距离,显然并不是要找经过最少步数的路径,而是在找路径中各路段的距离之和最小的路径,在图论中称为最短加权路径长度——这里权重是路段距离。
相邻顶点的连接边的权,不仅可以是路段距离,也可以是时间、费用等指标。问题就变成寻求最短时间、最低成本的路径,这实际上也是最短加权路径长度问题。
1.2 最短路径的常用算法
求解最短路径长度的常用算法是 Dijkstra 算法、Bellman-Ford 算法和Floyd 算法,另外还有启发式算法 A*。
1.2.1 Dijkstra 算法
Dijkstra 算法是经典的最短路径算法,在数据结构、图论、运筹学中都是教学的基本算法。有趣的是,在数据结构中 Dijkstra 算法通常是按贪心法讲述,而在运筹学中则被认为是动态规划法。
Dijkstra算法从起点开始,采用贪心法策略,每次遍历距离起点最近且未访问过的邻接顶点, 层层扩展直到终点为止。
Dijkstra算法可以求出加权最短路径的最优解,算法的时间复杂度为 O(n^2)。如果边数远小于 n^2,可以用堆结构将复杂度降为O((m+n)log(n))。
Dijkstar算法不能处理负权边,这是由于贪心法的选择规则决定的。
1.2.2 Bellman-Ford 算法
Bellman-Ford 算法是求含负权图的单源最短路径算法。算法原理是对图进行 V-1次松弛操作,得到所有可能的最短路径。
Bellman-Ford 算法可以处理负权边。其基本操作“拓展”是在深度上搜索,而“松弛”操作则在广度上搜索,因此可以对负权边进行操作而不影响结果。
Bellman-Ford 算法的效率很低,时间复杂度高达 O(V*E),V、E 分别是顶点和边的数量。SPFA 是 Bellman-Ford 的队列优化,通过维护一个队列极大地减少了重复计算,时间复杂度为 O(k*E) 。
Dijkstra 算法在求解过程中,起点到各顶点的最短路径求出后就不变了。Bellman算法在求解过程中,每次循环都要修改所有顶点间的距离,起点到各顶点最短路径一直要到算法结束才确定。
1.2.3 Floyd 算法
Floyd 算法又称插点法,运用动态规划思想求解有权图中多源点之间最短路径问题。算法从图的带权邻接矩阵开始,递归地进行 n 次更新得到图的距离矩阵,进而可以得到最短路径节点矩阵。
Floyd 算法的时间复杂度为 O(n^3),空间复杂度为 O(n^2)。算法时间复杂度较高,不适合计算大量数据。Floyd 算法的优点是可以一次性求解任意两个节点之间的最短距离,对于稠密图的效率高于执行 V 次 Dijkstra算法。
Floyd 算法可以处理负权边。
Floyd 算法号称只有 5行代码,我们来欣赏一下:
for(k=0;k<n;k++)//中转站0~k
for(i=0;i<n;i++) //i为起点
for(j=0;j<n;j++) //j为终点
if(d[i][j]>d[i][k]+d[k][j])//松弛操作
d[i][j]=d[i][k]+d[k][j];
1.2.4 A* 算法
A*算法是一种静态路网中求解最短路径最有效的直接搜索方法。
A*算法是启发式算法,采用最佳优先(Best-first)搜索策略,基于估价函数对每个搜索位置的评估结果,猜测最好的位置优先进行搜索。
A*算法极大地减少了低质量的搜索路径,因而搜索效率很高,比传统的路径规划算法实时性更高、灵活性更强;但是,A*算法找到的是相对最优路径,不是绝对的最短路径,适合大规模、实时性高的问题。
1.3 最短路径算法的选择
2. NetworkX 中的最短路径算法
NetworkX 提供了丰富的最短路径函数,除了常见的 Dijkstra 算法、Bellman-ford 算法、Floyd Warshall 算法和 A*算法,还有 Goldbery-Radzik 算法和 Johnson 算法。其中,Bellman-ford 算法函数使用的是队列改进算法,即以 SPFA 算法实现。
2.1 无向图和有向图的最短路径求解函数
shortest_path(G[, source, target, weight,...]) | 计算图中的最短路径 |
all_shortest_paths(G, source, target[,...]) | 计算图中所有最短的简单路径 |
shortest_path_length(G[, source, target, ...]) | 计算图中的最短路径长度 |
average_shortest_path_length(G[, weight, method]) | 计算平均最短路径长度 |
其中,最基本的求解最短路径函数 shortest() 和 最短路径长度 shortest_path_length() 是 ‘dijkstra’ 算法和 ‘bellman-ford’ 算法的集成接口,可以通过 method=\'dijkstra\' 选择不同的算法。
shortest_path(G, source=None, target=None, weight=None, method=\'dijkstra\')
shortest_path_length(G, source=None, target=None, weight=None, method=\'dijkstra\')
主要参数:
- G(NetworkX graph):图。
- source (node):起点。
- target (node):终点。
- weight (string or function):参数为字符串(string)时,按该字符串查找边的属性作为权重;如果该字符串对应的边属性不存在,则权重置为 1;参数为函数时,边的权重是函数的返回值。
- method [string, optional (default = ‘dijkstra’)]:支持的选项为 ‘dijkstra’, ‘bellman-ford’。
2.2 无权图最短路径算法
single_source_shortest_path(G, source[,cutoff]) | 计算从源到所有可达节点的最短路径 |
single_source_shortest_path_length(G,source) | 计算从源到所有可达节点的最短路径长度 |
single_target_shortest_path(G, target[,cutoff]) | 计算从所有可达节点到目标的最短路径 |
single_target_shortest_path_length(G,target) | 计算从所有可达节点到目标的最短路径长度 |
all_pairs_shortest_path(G[, cutoff]) | 计算所有节点之间的最短路径 |
all_pairs_shortest_path_length(G[, cutoff]) | 计算所有节点之间的最短路径长度 |
2.3 有权图最短路径算法
dijkstra_path(G, source, target[, weight]) | 计算从源到目标的最短加权路径 |
dijkstra_path_length(G, source, target[,weight]) | 计算从源到目标的最短加权路径长度 |
all_pairs_dijkstra_path(G[, cutoff, weight]) | 计算所有节点之间的最短加权路径 |
all_pairs_dijkstra_path_length(G[, cutoff,... ]) | 计算所有节点之间的最短加权路径长度 |
bellman_ford_path(G, source, target[, weight]) | 计算从源到目标的最短路径 |
bellman_ford_path_length(G, source, target) | 计算从源到目标的最短路径长度 |
all_pairs_bellman_ford_path(G[, weight]) | 计算所有节点之间的最短路径 |
all_pairs_bellman_ford_path_length(G[,weight]) | 计算所有节点之间的最短路径长度 |
floyd_warshall(G[, weight]) | 用 Floyd 法计算所有节点之间的最短路径长度 |
floyd_warshall_numpy(G[, nodelist, weight]) | 用 Floyd 法计算所有指定节点之间的最短路径长度 |
3. NetworkX 中的 Dijkstra 算法
NetworkX 中关于 Dijkstra 算法提供了 13 个函数,很多函数的功能是重复的。这里只介绍最基本的函数 dijkstra_path() 和 dijkstra_path_length()。
3.1 dijkstra_path() 和 dijkstra_path_length() 使用说明
dijkstra_path() 用于计算从源到目标的最短加权路径,dijkstra_path_length() 用于计算从源到目标的最短加权路径长度。
dijkstra_path(G, source, target, weight=\'weight\')
dijkstra_path_length(G, source, target, weight=\'weight\')
主要参数:
- G(NetworkX graph):图。
- source (node):起点。
- target (node):终点。
- weight (string or function):参数为字符串(string)时,按该字符串查找边的属性作为权重;如果该字符串对应的边属性不存在,则权重置为1;参数为函数时,边的权重是函数的返回值。
返回值:
- dijkstra_path() 的返回值是最短加权路径中的节点列表,数据类型为list。
- dijkstra_path_length() 的返回值是最短加权路径的长度(路径中的边的权重之和)。
3.2 例题 1:无向图的最短路径问题
例题 1:已知如图的有权无向图,求顶点 v1 到 顶点 v11 的最短路径。
本问题来自:司守奎、孙兆亮,数学建模算法与应用(第2版),P43,例4.3,国防工业出版社。
程序说明:
3.3 dijkstra_path() 算法例程
# mathmodel16_v1.py
# Demo16 of mathematical modeling algorithm
# Demo of shortest path with NetworkX
# Copyright 2021 YouCans, XUPT
# Crated:2021-07-07
import matplotlib.pyplot as plt # 导入 Matplotlib 工具包
import networkx as nx # 导入 NetworkX 工具包
# 问题 1:无向图的最短路问题(司守奎,数学建模算法与应用,P43,例4.3)
G1 = nx.Graph() # 创建:空的 无向图
G1.add_weighted_edges_from([(1,2,2),(1,3,8),(1,4,1),
(2,3,6),(2,5,1),
(3,4,7),(3,5,5),(3,6,1),(3,7,2),
(4,7,9),
(5,6,3),(5,8,2),(5,9,9),
(6,7,4),(6,9,6),
(7,9,3),(7,10,1),
(8,9,7),(8,11,9),
(9,10,1),(9,11,2),
(10,11,4)]) # 向图中添加多条赋权边: (node1,node2,weight)
print(\'nx.info:\',G1.nodes) # 返回图的基本信息
# 两个指定顶点之间的最短加权路径
minWPath_v1_v11 = nx.dijkstra_path(G1, source=1, target=11) # 顶点 1 到 顶点 11 的最短加权路径
print(\"顶点 v1 到 顶点 v11 的最短加权路径: \", minWPath_v1_v11)
# 两个指定顶点之间的最短加权路径的长度
lMinWPath_v1_v11 = nx.dijkstra_path_length(G1, source=1, target=11) # 最短加权路径长度
print(\"顶点 v1 到 顶点 v11 的最短加权路径长度: \", lMinWPath_v1_v11)
pos = {1: (0,4), 2: (5,7), 3: (5,4), 4: (5,1), 5: (10,7), 6: (10,4), 7: (10,1),
8: (15,7), 9: (15,4), 10: (15,1), 11: (20,4)} # 指定顶点位置
labels = nx.get_edge_attributes(G1, \'weight\') # 设置边的 labels 为 ‘weight\'
nx.draw(G1, pos, with_labels=True, font_color=\'w\') # 绘制无向图
nx.draw_networkx_edge_labels(G1, pos, edge_labels=labels, font_color=\'c\') # 显示边的权值
plt.show()
3.4 程序运行结果
nx.info: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
顶点 v1 到 顶点 v11 的最短加权路径: [1, 2, 5, 6, 3, 7, 10, 9, 11]
顶点 v1 到 顶点 v11 的最短加权路径长度: 13
4. NetworkX 中的 Bellman-Ford 算法
NetworkX 中关于 Bellman-Ford 算法提供了多个函数,这里只介绍最基本的函数 bellman_ford_path() 和 bellman_ford_path_length()。
4.1 bellman_ford_path() 和 bellman_ford_path_length() 使用说明
bellman_ford_path() 用于计算从源到目标的最短加权路径,bellman_ford_path_length() 用于计算从源到目标的最短加权路径长度。
bellman_ford_path(G, source, target, weight=\'weight\')
bellman_ford_path_length(G, source, target, weight=\'weight\')
主要参数:
- G(NetworkX graph):图。
- source (node):起点。
- target (node):终点。
- weight (string):按字符串查找边的属性作为权重。默认值为权重 \'weight\'。
返回值:
- bellman_ford_path() 的返回值是最短加权路径中的节点列表,数据类型为list。
- bellman_ford_path_length() 的返回值是最短加权路径的长度(路径中的边的权重之和)。
4.2 例题 2:城市间机票价格问题
例题 2:城市间机票价格问题。
已知 6个城市之间的机票票价如矩阵所示(无穷大表示没有直航),求城市 c0 到其它城市 c1...c5 的票价最便宜的路径及票价。
\\[\\begin{bmatrix}
0 & 50 & \\infty & 40 & 25 & 10\\\\
50 & 0 & 15 & 20 & \\infty & 25\\\\
\\infty & 15 & 0 & 10 & 20 & \\infty\\\\
40 & 20 & 10 & 0 & 10 & 25\\\\
25 & \\infty & 20 & 10 & 0 & 55\\\\
10 & 25 & \\infty & 25 & 55 & 0\\\\
\\end{bmatrix}
\\]
来源:https://www.cnblogs.com/youcans/p/15107067.html
图文来源于网络,如有侵权请联系删除。