百木园-与人分享,
就是让自己快乐。

Python小白的数学建模课-10.微分方程边值问题

小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文。

本文介绍微分方程模型边值问题的建模与求解,不涉及算法推导和编程,只探讨如何使用 Python 的工具包,零基础求解微分方程模型边值问题。

通过 3个 BVP 案例层层深入,手把手教你搞定微分方程边值问题。

欢迎关注『Python小白的数学建模课 @ Youcans』系列,每周持续更新

1. 常微分方程的边值问题(BVP)

1.1 基本概念

微分方程是指含有未知函数及其导数的关系式。

微分方程是描述系统的状态随时间和空间演化的数学工具。物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。微分方程在化学、工程学、经济学和人口统计等领域也有广泛应用。

微分方程分为初值问题和边值问题。初值问题是已知微分方程的初始条件,即自变量为零时的函数值,一般可以用欧拉法、龙哥库塔法来求解。边值问题则是已知微分方程的边界条件,即自变量在边界点时的函数值。

边值问题的提出和发展,与流体力学、材料力学、波动力学以及核物理学等密切相关,并且在现代控制理论等学科中有重要应用。例如,力学问题中的悬链线问题、弹簧振动问题,热学问题中的导热细杆问题、细杆端点冷却问题,流体力学问题、结构强度问题。

上节我们介绍的常微分方程,主要是微分方程的初值问题。本节介绍二阶常微分方程边值问题的建模与求解。

1.2 常微分方程边值问题的数学模型

只含边界条件作为定解条件的常微分方程求解问题,称为常微分方程的边值问题(boundary value problem)。

一般形式的二阶常微分方程边值问题:

\\[y{\\ \'\'} = f(x,y,y{\\ \'}),\\; a<x<b
\\]

来源:https://www.cnblogs.com/youcans/p/15045860.html
图文来源于网络,如有侵权请联系删除。

未经允许不得转载:百木园 » Python小白的数学建模课-10.微分方程边值问题

相关推荐

  • 暂无文章