1、map
map是python内置的高阶函数,它接收一个函数和一个列表,函数依次作用在列表的每个元素上,返回一个可迭代map对象。
class map(object):
\"\"\"
map(func, *iterables) --> map object
Make an iterator that computes the function using arguments from
each of the iterables. Stops when the shortest iterable is exhausted.
\"\"\"
def __getattribute__(self, *args, **kwargs): # real signature unknown
\"\"\" Return getattr(self, name). \"\"\"
pass
def __init__(self, func, *iterables): # real signature unknown; restored from __doc__
pass
def __iter__(self, *args, **kwargs): # real signature unknown
\"\"\" Implement iter(self). \"\"\"
pass
@staticmethod # known case of __new__
def __new__(*args, **kwargs): # real signature unknown
\"\"\" Create and return a new object. See help(type) for accurate signature. \"\"\"
pass
def __next__(self, *args, **kwargs): # real signature unknown
\"\"\" Implement next(self). \"\"\"
pass
def __reduce__(self, *args, **kwargs): # real signature unknown
\"\"\" Return state information for pickling. \"\"\"
pass
用法举例 : 将列表li中的数值都加1, li = [1,2,3,4,5]
li = [1,2,3,4,5]
def add1(x):
return x+1
res = map(add1, li)
print(res)
for i in res:
print(i)
结果:
<map object at 0x00000042B4E6D4E0>
2
3
4
5
6
2、lambda表达式
是一个表达式,可以创建匿名函数,冒号前是参数,冒号后只能有一个表达式(传入参数,根据参数表达出一个值)
nl = lambda x,y:x*y # 给出x,y参数,计算出x和y的相乘
print(nl(3,5))
print(\'-----\')
#和map的结合
li = [1,2,3,4,5]
for i in map(lambda x:x*2, li):
print(i)
结果:
15
-----
2
4
6
8
10
3、Pool
1、多进程,是multiprocessing的核心,它与threading很相似,但对多核CPU的利用率会比threading好的多
2、可以允许放在Python程序内部编写的函数中,该Process对象与Thread对象的用法相同,拥有is_alive()、join([timeout])、run()、start()、terminate()等方法
3、multiprocessing包中也有Lock/Event/Semaphore/Condition类,用来同步进程
传统的执行多个函数的例子
import time
def do_proc(n): # 返回平方值
time.sleep(1)
return n*n
if __name__ == \'__main__\':
start = time.time()
for p in range(8):
print(do_proc(p)) # 循环执行8个函数
print(\"execute time is \" ,time.time()-start)
结果:
0
1
4
9
16
25
36
49
execute time is 8.002938985824585
使用多进程执行函数
\'\'\'
遇到问题没人解答?小编创建了一个Python学习交流群:531509025
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
\'\'\'
import time
from multiprocessing import Pool
def do_proc(n): # 返回平方值
time.sleep(n)
print(n)
return n*n
if __name__ == \'__main__\':
pool = Pool(3) # 池中最多只能放三个任务
start = time.time()
p1 = pool.map(do_proc, range(8)) # 跟python的map用法相似(map连续生成8个任务的同时依次传给pool,pool依次调起池中的任务,执行完的任务从池中剔除)
pool.close() # 关闭进程池
pool.join() # 等待所有进程(8个进程)的结束
print(p1)
print(\"execute time is \", time.time() - start)
结果:
0
1
2
3
4
5
6
7
[0, 1, 4, 9, 16, 25, 36, 49]
execute time is 3.3244528770446777
查看任务管理器:
4、random
import random
print(random.random()) # 生成一个0-1随机小数
print(random.uniform(10,20)) # 指定范围随机选择一个小数
print(random.randint(10,20)) # 指定范围内随机选择一个整数
print(random.randrange(0,90,2)) # 指定范围内选择一个随机偶数
print(random.choice(\'abcdefg\')) # 指定字符串中随机选择一个字符
print(random.sample(\'abcdefgh\'),2) # 指定字符串内随机选择2个字符
print(random.choice([\'app\',\'pear\',\'ora\'])) # 指定列表内随机选择一个值
itmes = [1,2,3,4,5,6,7,8] # 将列表表洗牌
random.shuffle(itmes)
print(itmes)
来源:https://www.cnblogs.com/djdjdj123/p/15013102.html
图文来源于网络,如有侵权请联系删除。