一、前言
小编最近一直在研究关于分库分表的东西,前几天docker安装了mycat实现了分库分表,但是都在说mycat的bug很多。很多人还是倾向于shardingsphere
,其实他是一个全家桶,有JDBC、Proxy 和 Sidecar
组成,小编今天以最简单的JDBC
来简单整合一下!
现在最新版已经是5.1.1
,经过一天的研究用于解决了所有问题,完成了单库分表!!
想了解4.0.0版本的可以看一下小编刚刚写的:SpringBoot+Mybatis-Plus整合Sharding-JDBC4.0.0实现单库分表
如果想看mycat的可以看一下小编之前写的文章哈:Docker安装Mycat和Mysql进行水平分库分表实战
二、踩过的坑
1. 数据源问题
不要使用druid-spring-boot-starter
这个依赖,启动会有问题
<dependency>-->
<groupId>com.alibaba</groupId>
<artifactId>druid-spring-boot-starter</artifactId>
<version>1.1.21</version>
/dependency>
报错信息:
Caused by: org.springframework.beans.factory.BeanCreationException: Error creating bean with name \'userMapper\' defined in file
[D:\\jiawayun\\demo\\target\\classes\\com\\example\\demo\\mapper\\UserMapper.class]:
Invocation of init method failed; nested exception is
java.lang.IllegalArgumentException: Property \'sqlSessionFactory\'
or \'sqlSessionTemplate\' are required
解决方案:
使用单独的druid
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>druid</artifactId>
<version>1.2.8</version>
</dependency>
建议使用默认的数据源,sharding-jdbc也是使用的默认的数据源,小编使用的自带的,忘记druid
后面会不会有问题了!!
type: com.zaxxer.hikari.HikariDataSource
2. Insert 语句不支持分表路由到多个数据节点
报错信息:
Insert statement does not support sharding table routing to multiple data nodes.
解决方案:
看小编文章:解决不支持分表路由问题
三、导入maven依赖
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
<exclusions>
<exclusion>
<groupId>org.junit.vintage</groupId>
<artifactId>junit-vintage-engine</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.shardingsphere</groupId>
<artifactId>shardingsphere-jdbc-core-spring-boot-starter</artifactId>
<version>5.1.1</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
<!-- lombok -->
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.10</version>
</dependency>
<!--jdbc-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-jdbc</artifactId>
</dependency>
<!-- mysql -->
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
</dependency>
<!-- mybatis-plus -->
<dependency>
<groupId>com.baomidou</groupId>
<artifactId>mybatis-plus-boot-starter</artifactId>
<version>3.5.1</version>
</dependency>
四、新建表
1. 新建二张表
命名为:user_0
、user_1
CREATE TABLE `user_0` (
`cid` bigint(25) NOT NULL,
`name` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
`gender` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
`data` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,
PRIMARY KEY (`cid`) USING BTREE
) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;
SET FOREIGN_KEY_CHECKS = 1;
2. 数据库结构
五、框架全局展示
1. User实体类
@Data
public class User implements Serializable {
private static final long serialVersionUID = 337361630075002456L;
private Long cid;
private String name;
private String gender;
private String data;
}
2. controller
@RestController
@RequestMapping(\"/test\")
public class UserController {
@Autowired
private UserMapper userMapper;
@GetMapping(\"/insertTest\")
public void insertTest(){
for (int i = 1 ; i < 10; i++) {
User test = new User(\"王\"+i,\"男\",\"数据\" + i);
userMapper.insert(test);
}
}
}
3. mapper
我们直接省略了service,简单一下哈!!
public interface UserMapper extends BaseMapper<User> {
}
4. application.yml配置
server:
port: 8089
spring:
shardingsphere:
mode:
type: memory
# 是否开启
datasource:
# 数据源(逻辑名字)
names: m1
# 配置数据源
m1:
type: com.zaxxer.hikari.HikariDataSource
driver-class-name: com.mysql.cj.jdbc.Driver
url: jdbc:mysql://localhost:3306/test?useSSL=false&autoReconnect=true&characterEncoding=UTF-8&serverTimezone=UTC
username: root
password: root
# 分片的配置
rules:
sharding:
# 表的分片策略
tables:
# 逻辑表的名称
user:
# 数据节点配置,采用Groovy表达式
actual-data-nodes: m1.user_$->{0..1}
# 配置策略
table-strategy:
# 用于单分片键的标准分片场景
standard:
sharding-column: cid
# 分片算法名字
sharding-algorithm-name: user_inline
key-generate-strategy: # 主键生成策略
column: cid # 主键列
key-generator-name: snowflake # 策略算法名称(推荐使用雪花算法)
key-generators:
snowflake:
type: SNOWFLAKE
sharding-algorithms:
user_inline:
type: inline
props:
algorithm-expression: user_$->{cid % 2}
props:
# 日志显示具体的SQL
sql-show: true
logging:
level:
com.wang.test.demo: DEBUG
mybatis-plus:
mapper-locations: classpath:mapper/*.xml
type-aliases-package: com.example.demo.entity
configuration:
#在映射实体或者属性时,将数据库中表名和字段名中的下划线去掉,按照驼峰命名法映射 address_book ---> addressBook
map-underscore-to-camel-case: true
5. 启动类
@MapperScan(\"com.example.demo.mapper\")
@SpringBootApplication
public class DemoApplication {
public static void main(String[] args) {
SpringApplication.run(DemoApplication.class, args);
}
}
六、测试插入九条数据
本次测试策略是:行表达式分片策略:inline
1. 插入数据
输入 :localhost:8089/test/insertTest
分片成功
2. 单个查询
@GetMapping(\"/selectOneTest\")
public void selectOneTest(){
User user = userMapper.selectOne(Wrappers.<User>lambdaQuery().eq(User::getCid,736989417020850176L));
System.out.println(user);
}
这时他会根据cid去自动获取去那个表中获取数据
3. 全查询
@GetMapping(\"/selectListTest\")
public void selectListTest(){
List<User> list = userMapper.selectList(null);
System.out.println(list);
}
由于没有条件,他会去把两个表UNION ALL
进行汇总
4. 分页查询
需要先配置mybatis-plus分页配置类:
@Configuration
public class MybatisPlusConfig {
@Bean
public MybatisPlusInterceptor mybatisPlusInterceptor() {
MybatisPlusInterceptor interceptor = new MybatisPlusInterceptor();
interceptor.addInnerInterceptor(new PaginationInnerInterceptor(DbType.MYSQL));
return interceptor;
}
}
@GetMapping(\"/selectListPage\")
public void selectListPage(){
IPage<User> page = new Page(1,6);
IPage<User> userIPage = userMapper.selectPage(page,null);
List<User> records = userIPage.getRecords();
System.out.println(records);
}
我们user_0有5条数据,user_1有4条数据
我们发现它会向所有的表中去进行一遍分页查询,第一个表数据不够就会加上另一个表分页拿到的值
分页size为3时,一个user_0就可以满足分页条件,就会忽略user_1的分页数据。
5. 非分片属性查询
我们先把user_0表
性别修改两个为女,然后进行查询!看看没有分片的字段是否能够只去user_0
去查询
@GetMapping(\"/selectListByGender\")
public void selectListByGender(){
List<User> list = userMapper.selectList(Wrappers.<User>lambdaQuery().eq(User::getGender, \"女\"));
System.out.println(list);
}
有图可见:不是分片的字段查询,回去全连接表去查询一遍,效率和不分表一样了哈!!
6. 分片属性来自一个表in查询
@GetMapping(\"/selectInList\")
public void selectList(){
List<User> users = userMapper.selectList(Wrappers.<User>lambdaQuery().in(User::getCid,736989417020850176L,736989418119757824L));
System.out.println(users);
}
我们可以发现,我们根据分片字段进行in查询,sharding-jdbc会识别出来来自于那个表进而提高效率,不会所有的表进行全连接。
七、总结
这样就完成了最新版的sharding-jdbc
的简单测试和一些坑的解决,总的来说配置很费劲,不能有一定的错误!
看到这里了,还不给小编一键三连走起来,谢谢大家了!!
有缘人才可以看得到的哦!!!
点击访问!小编自己的网站,里面也是有很多好的文章哦!
来源:https://www.cnblogs.com/wang1221/p/16325709.html
本站部分图文来源于网络,如有侵权请联系删除。