-
线性规划是很多数模培训讲的第一个算法,算法很简单,思想很深刻。
-
要通过线性规划问题,理解如何学习数学建模、如何选择编程算法。
-
『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人。
1. 求解方法、算法和编程方案
线性规划 (Linear Programming,LP) 是很多数模培训讲的第一个算法,算法很简单,思想很深刻。
线性规划问题是中学数学的内容,鸡兔同笼就是一个线性规划问题。数学规划的题目在高考中也经常出现,有直接给出线性约束条件求线性目标函数极值,有间接给出约束条件求线性目标函数极值,还有已知约束条件求非线性目标函数极值问题。
因此,线性规划在数学建模各类问题和算法中确实是比较简单的问题。下面我们通过这个比较简单、也比较熟悉的问题,分析一下数学模型问题的方法、算法和学习方案。探讨这些容易混淆的概念,也便于大家理解本系列教程的初衷和特色。
欢迎关注 『Python小白的数学建模课 @ Youcans』,每周更新数模笔记
Python小白的数学建模课-01.新手必读
Python小白的数学建模课-02.数据导入
Python小白的数学建模课-03.线性规划
Python数模笔记-PuLP库
Python数模笔记-StatsModels统计回归
Python数模笔记-Sklearn
Python数模笔记-NetworkX
Python数模笔记-模拟退火算法
1.1 线性规划问题的求解方法
解决线性规划问题有很多数学方法,例如:
- 图解法, 用几何作图的方法并求出其最优解,中学就讲过这种方法,在经济学研究中十分常用;
- 矩阵法, 引进松弛变量将线性规划问题转换成增广矩阵形式后逐次求解, 是单纯性法之前的典型方法;
- 单纯性法, 利用多面体在可行域内逐步构造新的顶点来不断逼近最优解,是线性规划研究的里程碑,至今仍然是最重要的方法之一;
- 内点法,通过选取可行域内部点沿下降方向不断迭代来达到最优解,是目前理论上最好的线性规划问题求解方法;
- 启发式方法,依靠经验准则不断迭代改进来搜索最优解 ,如贪心法、模拟退火、遗传算法、神经网络。
虽然不同的求解方法都是面对线性规划问题,也就必然会殊途同归,但它们在思想上就存在着本质区别,在求解方法和步骤上也就完全不同。
不夸张地说,对于很多小白,学没学过单纯性法,对于学习启发式方法可能完全没有区别。
这意味着什么呢?这就是说,对于非数学专业的同学,对于学习数学建模的同学,针对每一类问题,完全没必要学习各种解决方法。即便是数学专业的同学,也不可能在数模学习期间把各种方法都学会。
对于小白,本文推荐选择较为通用、相对简单(思路简单、程序简单)的方法来进行学习,没必要贪多求新。
1.2 线性规划的最快算法
算法,跟方法有什么不同呢?
算法的定义是“解题方案的准确而完整的描述”,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。
我对“方法”的理解是思想方法,是求解问题总体框架,而“算法”是具体和明确的实现步骤,在计算机编程中相当于详细的流程图。
在每一种方法的基本思想和方案提出后,往往都会有很多变形、改进和发展的算法。极少的改进算法具有实质贡献而成为主流的经典算法,即便如此往往也只是性能、效率上的提升,对于求解数模竞赛中的问题基本没有影响。
而绝大多数改进算法只是针对某些特殊情况、特殊问题(自称)有效,常用于大量的灌水论文。对于数学建模来说,学习基本算法或者目前的经典算法就足够了,不需要听信改进算法中自称的优点,那都是莆田系的广告。
有一种例外情况,就是一些算法是有适用范围和限制条件的。举个例子,内点法的基本算法不能处理等式约束,最短路径问题中 Dijkstar算法不能处理负权边。这种情况下如果选错算法,问题是无法求解的。所以对我们来说,搞清楚算法的适用范围,比理解算法本身更重要。
回到本节的标题,对于线性规划问题,什么算法是最快的呢?答案是:猜。不是让你猜,而是说求解线性规划问题,猜起来比较快。不是开玩笑,我是认真的。
佐治亚理工学院彭泱教授在 2021年计算机理论顶会 SODA2021 获得最佳论文(Best paper award at ACM-SIAM symposium on discrete algorithms 2021),正是研究线性规划问题的求解——“Solving sparse linear systems faster than matrix multiplication”,所用的全新思路是:猜,反复猜,迭代猜。
当然,猜起来比较快只是在某些特殊条件下才有效的,至于在什么条件下猜,怎么猜,这不是我们所要关心,所能理解的问题了。只是以此说明,简单的问题也有复杂的情况,每个问题都有很多求解的思路、方法和算法。
1.3 选择适合自己的编程方案
编程方案是我杜撰的术语。我所要表达意思是,在选择了求解方法和算法以后,是自己按照算法步骤一步步编程实现,或者找到例程调试使用,还是调用第三方工具包/库函数来完成呢?
首先,对于学习数学建模、参加数模竞赛,不建议自己按照算法步骤去编程。我们在《01.新手必读》中讨论过这个问题,对于数学小白兼计算机小白,这样做既不可行也没必要;即使你愿意挑战自我去试试,那其实已经是走在学习另一门计算机或算法课程的路上了。
其次,要不要找到例程自己调试、使用?很多数模培训就是这么说,这么做的,而且把这些收集的例程当作核心机密吸引同学。我不反对这样做,这种学习方法对于理解算法、提高编程能力很有帮助;但是并不推荐这样做,原因是:(1)我认为学习数学建模、参加数模竞赛,重点应该放在识别问题、分析问题、解决问题,能使用算法和编程就足够了;(2)第三方库与例程没有本质区别,第三方库就是经典的、规范的、标准化的例程,既然选择例程为什么不选择优秀的例程——第三方库呢?(3)大部分例程都存在很多问题,即使调试通过仍然有很多坑,而且新手难以识别。
所以我是明确推荐优选直接使用第三方库来解决问题,这也是 Python 语言“不要重复造轮子”的思想。
进一步地,很多工具包/库函数都能实现常用的算法,应该如何选择呢?
如果你对某个工具包已经很熟悉,又能实现所要的算法,这当然是理想的选择。如果你是小白,就跟着我走吧。
本系列选择第三方工具包的原则是:(1)优选常用的工具包;(2)优选通用功能的工具包和函数(例如,最好既能实现线性规划,又能实现整数规划、非线性规划);(3)优选安装简单、使用简单、配置灵活的工具包;(4)优选兼模型检验、图形绘制的工具包。
2. PuLP库求解线性规划问题
2.1 线性规划问题的描述
线性规划是研究线性等式或不等式约束条件下求解线性目标函数的极值问题,常用于解决资源分配、生产调度和混合问题。
一般线性规划问题的标准形式为:
\\[max\\;f(x) = \\sum_{j=1} ^n c_j x_j\\\\
s.t.:\\begin{cases}
\\sum_{j=1} ^n a_{ij} x_j = b_i, \\\\
x_j \\geq 0
\\end{cases}
\\]
来源:https://www.cnblogs.com/youcans/p/14836629.html
图文来源于网络,如有侵权请联系删除。