百木园-与人分享,
就是让自己快乐。

Skywalking应用实战 Agent探针、Rocketbot以及告警

3 Skywalking应用

相关术语:

skywalking-collector:链路数据归集器,数据可以落地ElasticSearch/H2
skywalking-ui:web可视化平台,用来展示落地的数据
skywalking-agent:探针,用来收集和发送数据到归集器

3.1 agent下载

Skywalking-agent,它简称探针,用来收集和发送数据到归集器,我们先来学习下探针使用,探针对应的jar包在Skywalking源码中,我们需要先下载源码。

Skywalking源码下载地址: https://archive.apache.org/dist/skywalking/ ,我们当前使用的版本是8.3.0,选择下载对应版本。

file

agent目录结构如下:

agent
    ├── activations
    │   ├── apm-toolkit-kafka-activation-8.3.0.jar
    │   ├── ...
    │   └── apm-toolkit-trace-activation-8.3.0.jar
    ├── config # Agent 配置文件
    │   └── agent.config
    ├── logs # 日志文件
    ├── optional-plugins # 可选插件
    │   ├── apm-customize-enhance-plugin-8.3.0.jar
    │   ├── apm-gson-2.x-plugin-8.3.0.jar
    │   └── ... ...
    ├── bootstrap-plugins # jdk插件
    │   ├── apm-jdk-http-plugin-8.3.0.jar
    │   └── apm-jdk-threading-plugin-8.3.0.jar
    ├── plugins # 当前生效插件
    │   ├── apm-activemq-5.x-plugin-8.3.0.jar
    │   ├── apm-armeria-0.84.x-plugin-8.3.0.jar
    │   ├── apm-armeria-0.85.x-plugin-8.3.0.jar
    │   └── ... ...
    ├── optional-reporter-plugins
    │   └── kafka-reporter-plugin-8.3.0.jar
    └── skywalking-agent.jar【应用的jar包】

目录结构说明:

activations 当前skywalking正在使用的功能组件。

agent.config 文件是 SkyWalking Agent 的唯一配置文件。

plugins 目录存储了当前 Agent 生效的插件。

optional-plugins 目录存储了一些可选的插件(这些插件可能会影响整个系统的性能或是有版权问题),如果需要使用这些插件,需将相应 jar 包移动到 plugins 目录下。

skywalking-agent.jar 是 Agent 的核心 jar 包,由它负责读取 agent.config 配置文件,加载上述插件 jar 包,运行时收集到 的 Trace 和 Metrics 数据也是由它发送到 OAP 集群的。

我们在使用Skywalking的时候,整个过程中都会用到skywalking-agent.jar,而无论是RPC还是HTTP开发的项目,用法都一样,因此我们讲解当前主流的SpringBoot项目对agent的使用即可。

3.2 agent应用

项目使用agent,如果是开发环境,可以使用IDEA集成,如果是生产环境,需要将项目打包上传到服务器。为了使用agent,我们同时需要将下载的apache-skywalking-apm-bin文件包上传到服务器上去。不过无论是开发环境还是生产环境使用agent,对项目都是无侵入式的。

3.2.1 应用名配置

我们需要用到agent,此时需要将agent/config/agent.config配置文件拷贝到每个需要集成Skywalking工程的resource目录下,我们将agent.config拷贝到工程\\hailtaxi-parent的每个子工程目录下,并修改其中的 agent.service_name,修改如下:

hailtaxi-gateway:	agent.service_name=${SW_AGENT_NAME:hailtaxi-gateway}
hailtaxi-driver:	agent.service_name=${SW_AGENT_NAME:hailtaxi-driver}
hailtaxi-order:		agent.service_name=${SW_AGENT_NAME:hailtaxi-order}

agent.config 是一个 KV 结构的配置文件,类似于 properties 文件,value 部分使用 \"${}\" 包裹,其中使用冒号(\":\")分为两部分,前半部分是可以覆盖该配置项的系统环境变量名称,后半部分为默认值。例如这里的 agent.service_name 配置项,如果系统环境变量中指定了 SW_AGENT_NAME 值(注意,全是大写),则优先使用环境变量中指定的值,如果环境变量未指定,则使用 hailtaxi-driver 这个默认值。

直接把配置修改好后放到项目的resource目录下(或者其他路径)是最不容易才出错的一种方式,同时我们可以采用其他方式覆盖默认值:

1)JVM覆盖配置

例如这里的 agent.service_name 配置项,如果在 JVM 启动之前,明确中指定了下面的 JVM 配置:

# \"skywalking.\"是 Skywalking环境变量的默认前缀
-Dskywalking.agent.service_name = hailtaxi-driver

2)探针配置覆盖

将 Java Agent 配置为如下:

# 默认格式是 -javaagent:agent.jar=[option1]=[value1],[option2]=[value2]
-javaagent:/path/skywalking-agent.jar=agent.service_name=hailtaxi-driver

此时会使用该 Java Agent 配置值覆盖 agent.config 配置文件中 agent.service_name 默认值。

但是这些配置都有不同优先级,优先级如下:

探针配置 > JVM配置 > 系统环境变量配置 > agent.config文件默认值

3.2.2 IDEA集成使用agent

1、修改agent中数据收集服务的地址:agent/config/agent.confg

collector.backend_service=${SW_AGENT_COLLECTOR_BACKEND_SERVICES:192.168.200.129:11800}

当然也可以同构JVM参数配置

2、使用探针配置为3个项目分别配置agent:

1)hailtaxi-driver:

-javaagent:C:\\developer\\skywalking\\apache-skywalking-apm-bin\\agent\\skywalking-agent.jar
-Dskywalking.agent.service_name=hailtaxi-driver

将上面配置赋值到IDEA中:

file

2)hailtaxi-order

-javaagent:C:\\developer\\skywalking\\apache-skywalking-apm-bin\\agent\\skywalking-agent.jar
-Dskywalking.agent.service_name=hailtaxi-order

将上面配置赋值到IDEA中:

file

3)hailtaxi-gateway

-javaagent:C:\\developer\\skywalking\\apache-skywalking-apm-bin\\agent\\skywalking-agent.jar
-Dskywalking.agent.service_name=hailtaxi-gateway

将上面配置赋值到IDEA中:

file

此时启动IDEA,并访问:http://192.168.200.129:8080 效果如下:

file

如果你要追踪Gateway的话,你会发现:无法通过gateway发现路由的服务链路?

原因: Spring Cloud Gateway 是基于 WebFlux 实现,必须搭配上apm-spring-cloud-gateway-2.1.x-plugin 和 apm-spring-webflux-x.x-plugin 两个插件

方案:将agent/optional-plugins下的两个插件 复制到 agent/plugins目录下

3.3.3 生产环境使用agent

生产环境使用,因此我们需要将agent和每个项目的jar包上传到服务器上,上传apache-skywalking-apm-bin/usr/local/server/skywalking,再将工程\\hailtaxi-parent中的项目打包,并分别上传到服务器上,如下三个工程:

hailtaxi-order-1.0-SNAPSHOT.jar
hailtaxi-gateway-1.0-SNAPSHOT.jar
hailtaxi-driver-1.0-SNAPSHOT.jar

1)启动hailtaxi-gateway

java -javaagent:/usr/local/server/skywalking/apache-skywalking-apm-bin/agent/skywalking-agent.jar -Dskywalking.agent.service_name=hailtaxi-gateway -jar hailtaxi-gateway-1.0-SNAPSHOT.jar &

2)启动hailtaxi-driver

java -javaagent:/usr/local/server/skywalking/apache-skywalking-apm-bin/agent/skywalking-agent.jar -Dskywalking.agent.service_name=hailtaxi-driver -jar hailtaxi-driver-1.0-SNAPSHOT.jar &

3)启动hailtaxi-order

java -javaagent:/usr/local/server/skywalking/apache-skywalking-apm-bin/agent/skywalking-agent.jar -Dskywalking.agent.service_name=hailtaxi-order -jar hailtaxi-order-1.0-SNAPSHOT.jar &

3.3 Rocketbot

前面我们已经完成了SkyWalking环境搭建和项目应用agent使用,我们来看如何使用 SkyWalking 提供的 UI 界面—— Skywalking Rocketbot。

OAP服务和Rocket(其实就是个web项目)均已启动

file

3.3.1 Rocketbot-仪表盘

具体细则可参考资料:Skywalking仪表盘使用

file

Rocketbot从多个方面展示了服务信息,我们分别从多个方面进行讲解。

上图中的【仪表盘】、【拓扑图】、【追踪】、【性能剖析】、【日志】、【警告】属于功能菜单。

仪表盘属于数据统计功能,分别从服务热度、响应水平、服务个数、节点信息等展示统计数据。

  • Global Heatmap 面板:热力图,从全局展示了某段时间请求的热度。
  • Global Percent Response 面板 :展示了全局请求响应时间的 P99、P95、P75 等分位数。
  • Global Brief 面板:展示了 SkyWalking 能感知到的 Service、Endpoint 的个数。
  • Global Top Troughput 面板:展示了吞吐量前几名的服务。
  • Global Top Slow Endpoint 面板:展示了耗时前几名的 Endpoint。
  • Service (Avg) ResponseTime 面板:展示了指定服务的(平均)耗时。
  • Service (Avg) Throughput 面板:展示了指定服务的(平均)吞吐量。
  • Service (Avg) SLA 面板:展示了指定服务的(平均)SLA(Service Level Agreement,服务等级协议)。
  • Service Percent Response 面板:展示了指定服务响应时间的分位数。
  • Service Slow Endpoint 面板:展示了指定服务中耗时比较长的 Endpoint 信息。
  • Running ServiceInstance 面板:展示了指定服务下的实例信息。

除了 SkyWalking Rocketbot 默认提供的这些面板,我们还可以点击锁型按钮,自定义 Global 面板。在 ServiceInstance 面板中展示了很多 ServiceInstance 相关的监控信息,例如,JVM 内存使用情况、GC 次数、GC 耗时、CPU 使用率、ServiceInstance SLA 等等信息。

3.3.2 Rocketbot-拓扑图

file

【拓扑图】展示当前整个业务服务的拓扑图。点击拓扑图中的任意节点,可以看到服务相应的状态信息,其中包括响应的平均耗时、SLA 等监控信息。点击拓扑图中任意一条边,还可以看到一条调用链路的监控信息,其中会分别从客户端(上游调用方)和服务端(下游接收方)来观测这条调用链路的状态,其中展示了该条链路的耗时、吞吐量、SLA 等信息。

3.3.3 追踪

file

【追踪】主要用来查询 Trace 信息,如下图所示。在①处可以选择 Trace 的查询条件,其中可以指定 Trace 涉及到的 Service、ServiceInstance、Endpoint 以及Trace 的状态继续模糊查询,还可以指定 TraceId 和时间范围进行精确查询。在②处可以直接根据请求连接查找调用链路信息。在③处展示了 Trace 的简略信息。在④处可以选择不同的方式展示追踪信息。

在这里,我们不仅能看到调用链路信息,还能看到MySQL操作监控,如下图:

file

错误异常信息也能追踪,如下图:

file

3.3.4 性能分析

在传统的监控系统中,我们如果想要得知系统中的业务是否正常,会采用进程监控、日志收集分析等方式来对系统进行监控。当机器或者服务出现问题时,则会触发告警及时通知负责人。通过这种方式,我们可以得知具体哪些服务出现了问题。但是这时我们并不能得知具体的错误原因出在了哪里,开发人员或者运维人员需要到日志系统里面查看错误日志,甚至需要到真实的业务服务器上查看执行情况来解决问题。

如此一来,仅仅是发现问题的阶段,可能就会耗费相当长的时间;另外,发现问题但是并不能追溯到问题产生具体原因的情况,也常有发生。这样反反复复极其耗费时间和精力,为此我们便有了基于分布式追踪的APM系统。

通过将业务系统接入分布式追踪中,我们就像是给程序增加了一个放大镜功能,可以清晰看到真实业务请求的整体链路,包括请求时间、请求路径,甚至是操作数据库的语句都可以看得一清二楚。通过这种方式,我们结合告警便可以快速追踪到真实用户请求的完整链路信息,并且这些数据信息完全是持久化的,可以随时进行查询,复盘错误的原因。

然而随着我们对服务监控理解的加深,我们发现事情并没有那么简单。在分布式链路追踪中我们有这样的两个流派:代码埋点和字节码增强。无论使用哪种方式,底层逻辑一定都逃不过面向切面这个基础逻辑。因为只有这样才可以做到大面积的使用。这也就决定了它只能做到框架级别和RPC粒度的监控。这时我们可能依旧会遇到程序执行缓慢或者响应时间不稳定等情况,但无法具体查询到原因。这时候,大家很自然的会考虑到增加埋点粒度,比如对所有的Spring Bean方法、甚至主要的业务层方法都加上埋点。但是这种思路会遇到不小的挑战:

第一,增加埋点时系统开销大,埋点覆盖不够全面。通过这种方式我们确实可以做到具体业务场景具体分析。但随着业务不断迭代上线,弊端也很明显:大量的埋点无疑会加大系统资源的开销,造成CPU、内存使用率增加,更有可能拖慢整个链路的执行效率。虽然每个埋点消耗的性能很小,在微秒级别,但是因为数量的增加,甚至因为业务代码重用造成重复埋点或者循环使用,此时的性能开销已经无法忽略。

第二,动态埋点作为一项埋点技术,和手动埋点的性能消耗上十分类似,只是减少的代码修改量,但是因为通用技术的特别,上一个挑战中提到的循环埋点和重复使用的场景甚至更为严重。比如选择所有方法或者特定包下的所有方法埋点,很可能造成系统性能彻底崩溃。

第三,即使我们通过合理设计和埋点,解决了上述问题,但是JDK函数是广泛使用的,我们很难限制对JDK API的使用场景。对JDK过多方法、特别是非RPC方法的监控会造成系统的巨大延迟风险。而且有一些基础类型和底层工具类,是很难通过字节码进行增强的。当我们的SDK使用不当或者出现bug时,我们无法具体得知真实的错误原因。

Skywalking中可以使用性能剖析分析特定端点的性能,我们需要先创建一个监控任务:

file

新建任务后,在右侧可以查看任务性能分析报表,还可以点击分析线程栈信息,如下图:

file

3.3.5 告警

SkyWalking 告警功能是在6.x版本新增的,其核心由一组规则驱动,这些规则定义在config/alarm-settings.yml文件中。 告警的定义分为两部分:

  1. 告警规则:它们定义了应该如何触发度量警报,应该考虑什么条件。
  2. Webhook(网络钩子):定义当警告触发时,哪些服务终端需要被告知
3.3.5.1 警告规则详解

Skywalking每隔一段时间根据收集到的链路追踪的数据和配置的告警规则(如服务响应时间、服务响应时间百分比)等,判断如果达到阈值则发送相应的告警信息。发送告警信息是通过调用webhook接口完成,具体的webhook接口可以使用者自行定义,从而开发者可以在指定的webhook接口中编写各种告警方式,比如邮件、短信等。告警的信息也可以在RocketBot中查看到。

我们可以进入到Skywalking容器中,再进入到config文件夹下就可以看到alarm-settings.yml,如下图:

file

SkyWalking 的发行版都会默认提供config/alarm-settings.yml文件,里面预先定义了一些常用的告警规则。如下:

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# \"License\"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an \"AS IS\" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Sample alarm rules.
rules:
  # Rule unique name, must be ended with `_rule`.
  service_resp_time_rule:
    metrics-name: service_resp_time
    op: \">\"
    threshold: 1000
    period: 10
    count: 3
    silence-period: 5
    message: Response time of service {name} is more than 1000ms in 3 minutes of last 10 minutes.
  service_sla_rule:
    # Metrics value need to be long, double or int
    metrics-name: service_sla
    op: \"<\"
    threshold: 8000
    # The length of time to evaluate the metrics
    period: 10
    # How many times after the metrics match the condition, will trigger alarm
    count: 2
    # How many times of checks, the alarm keeps silence after alarm triggered, default as same as period.
    silence-period: 3
    message: Successful rate of service {name} is lower than 80% in 2 minutes of last 10 minutes
  service_resp_time_percentile_rule:
    # Metrics value need to be long, double or int
    metrics-name: service_percentile
    op: \">\"
    threshold: 1000,1000,1000,1000,1000
    period: 10
    count: 3
    silence-period: 5
    message: Percentile response time of service {name} alarm in 3 minutes of last 10 minutes, due to more than one condition of p50 > 1000, p75 > 1000, p90 > 1000, p95 > 1000, p99 > 1000
  service_instance_resp_time_rule:
    metrics-name: service_instance_resp_time
    op: \">\"
    threshold: 1000
    period: 10
    count: 2
    silence-period: 5
    message: Response time of service instance {name} is more than 1000ms in 2 minutes of last 10 minutes
#  Active endpoint related metrics alarm will cost more memory than service and service instance metrics alarm.
#  Because the number of endpoint is much more than service and instance.
#
#  endpoint_avg_rule:
#    metrics-name: endpoint_avg
#    op: \">\"
#    threshold: 1000
#    period: 10
#    count: 2
#    silence-period: 5
#    message: Response time of endpoint {name} is more than 1000ms in 2 minutes of last 10 minutes

webhooks:
#  - http://127.0.0.1/notify/
#  - http://127.0.0.1/go-wechat/

告警规则配置项的说明:

  • Rule name:规则名称,也是在告警信息中显示的唯一名称。必须以_rule结尾,前缀可自定义
  • Metrics name:度量名称,取值为oal脚本中的度量名,目前只支持longdoubleint类型。
  • Include names:该规则作用于哪些实体名称,比如服务名,终端名(可选,默认为全部)
  • Exclude names:该规则作不用于哪些实体名称,比如服务名,终端名(可选,默认为空)
  • Threshold:阈值
  • OP: 操作符,目前支持 ><=
  • Period:多久告警规则需要被核实一下。这是一个时间窗口,与后端部署环境时间相匹配
  • Count:在一个Period窗口中,如果values超过Threshold值(按op),达到Count值,需要发送警报
  • Silence period:在时间N中触发报警后,在TN -> TN + period这个阶段不告警。 默认情况下,它和Period一样,这意味着相同的告警(在同一个Metrics name拥有相同的Id)在同一个Period内只会触发一次
  • message:告警消息

在配置文件中预先定义的告警规则总结如下:

  1. 在过去10分钟内服务平均响应时间超过1秒达3次
  2. 在过去10分钟内服务成功率低于80%达2次
  3. 在过去10分钟内服务90%响应时间低于1秒达3次
  4. 在过去10分钟内服务的响应时间超过1秒达2次
  5. 在过去10分钟内端点的响应时间超过1秒达2次

这些警告信息最终会在Skywalking-UI上展示,效果如下:

file

3.3.5.2 Webhook规则

Webhook配置其实是警告消息接收回调处理,我们可以在程序中写一个方法接收警告信息,Skywalking会以application/json格式通过http请求发送,消息格式声明为:List<org.apache.skywalking.oap.server.core.alarm.AlarmMessage

字段如下:

  • scopeId, scope: 所有的scope实体在 org.apache.skywalking.oap.server.core.source.DefaultScopeDefine 里面声明。
  • name. 目标scope实体名称。
  • id0: scope实体ID,匹配名称。
  • id1: 不使用。
  • ruleName: 配置在 alarm-settings.yml 里面的规则名称.
  • alarmMessage: 告警信息.
  • startTime:触发告警的时间 示例:
[
  {
    \"scopeId\": 2,
    \"scope\": \"SERVICE_INSTANCE\",
    \"name\": \"c00158f28efc45cd813e21b6b8848a3a@192.168.1.104 of hailtaxi-driver\",
    \"id0\": \"aGFpbHpdmVy.1_YzAwMAMTkyLjE2OC4xLjEwNA\\u003d\\u003d\",
    \"id1\": \"\",
    \"ruleName\": \"service_instance_resp_time_rule\",
    \"alarmMessage\": \"Response time of service instance c00158f28efc45cd813e21b6b8848a3a@192.168.1.104 of hailtaxi-driver is more than 1000ms in 2 minutes of last 10 minutes\",
    \"startTime\": 1611612258056
  }
]
3.3.5.3 自定义Webhook消息接收

我们按照如下步骤,可以在自己程序中接收警告信息:

1)定义消息接收对象

hailtaxi-api中创建com.itheima.skywalking.model.AlarmMessage,代码如下:

@Data
@ToString
@AllArgsConstructor
@NoArgsConstructor
public class AlarmMessage {
    private int scopeId;
    private String name;
    private String id0;
    private String id1;
    private String alarmMessage;
    private long startTime;
    String ruleName;
}

2)接收警告方法创建

hailtaxi-driver中创建com.itheima.driver.controller.AlarmMessageController用于接收警告消息,代码如下:

一般情况下,这种接收告警的api会被放置在比较清闲的后台服务中!!!

@RestController
@RequestMapping(value = \"/skywalking\")
public class AlarmMessageController {

    /***
     * 接收警告信息
     * @param alarmMessageList
     */
    @PostMapping(\"/webhook\")
    public void webhook(@RequestBody List<AlarmMessage> alarmMessageList) {
        for (AlarmMessage alarmMessage : alarmMessageList) {
            System.out.println(\"webhook:\"+alarmMessage);
        }
    }
}

3)修改Webhook地址

修改alarm-settings.yml中的webhook地址:

webhooks:
#  - http://127.0.0.1/notify/
#  - http://127.0.0.1/go-wechat/
   - http://192.168.200.10:8001/driver/skywalking/webhook

因为skywalking默认有一个告警规则:10分钟内服务成功率低于80%超过2次

所以为了能演示出告警效果,我们在hailtaxi-driver项目中的driver/info接口中添加一个一句话

/****
   * 司机信息
   */
  //@GetMapping(value = \"/info/{id}\")
  @RequestMapping(value = \"/info/{id}\")
  public Driver info(@PathVariable(value = \"id\")String id,HttpServletRequest request){
      int i = 1/ 0; // 产生异常
      Enumeration<String> headerNames = request.getHeaderNames();
      while (headerNames.hasMoreElements()){
          String name = headerNames.nextElement();
          String value = request.getHeader(name);
          System.out.println(name+\":\"+value);
          System.out.println(\"--------------------------\");
      }
      return driverService.findById(id);
  }

测试时将网关的条件断言给注释一下!!!

此时我们程序中就能接收警告信息了。

本文由传智教育博学谷 - 狂野架构师教研团队发布
如果本文对您有帮助,欢迎关注和点赞;如果您有任何建议也可留言评论或私信,您的支持是我坚持创作的动力
转载请注明出处!


来源:https://www.cnblogs.com/jiagooushi/p/16381838.html
本站部分图文来源于网络,如有侵权请联系删除。

未经允许不得转载:百木园 » Skywalking应用实战 Agent探针、Rocketbot以及告警

相关推荐

  • 暂无文章