百木园-与人分享,
就是让自己快乐。

近段时间天气暴热,所以采集北上广深去年天气数据,制作可视化图看下

前言

最近天气异常暴热,看到某些地方地表温度居然达到70°,这就离谱
所以就想采集一下天气的数据,做个可视化图,回忆一下去年的天气情况

开发环境

  • python 3.8 运行代码
  • pycharm 2021.2 辅助敲代码
  • requests 第三方模块

对于本篇文章有疑问的同学可以加【资料白嫖、解答交流群:753182387】

天气数据采集

1. 发送请求

url = \'https://tianqi.2345.com/Pc/GetHistory?areaInfo%5BareaId%5D=54511&areaInfo%5BareaType%5D=2&date%5Byear%5D=2022&date%5Bmonth%5D=5\'
response = requests.get(url)
print(response)

 

返回<Response [200]>: 请求成功

2. 获取数据

print(response.json())

 

3. 解析数据 天气信息提取出来

结构化数据解析:Python字典取值
非结构化数据解析:网页结构

json_data = response.json()
html_data = json_data[\'data\']
select = parsel.Selector(html_data)
trs = select.css(\'table tr\')
for tr in trs[1:]:
    # 网页结构
    # html网页 <td>asdfwaefaewfweafwaef</td> <a></a> <div></div>
    # ::text: 我需要这个 标签里面的文本内容
    td = tr.css(\'td::text\').getall()
    print(td)

 

4. 保存数据

with open(\'天气数据.csv\', encoding=\'utf-8\', mode=\'a\', newline=\'\') as f:
    csv_writer = csv.writer(f)
    csv_writer.writerow(td)

 


数据可视化效果

读取数据

data = pd.read_csv(\'天气数据.csv\')
data

 

分割日期/星期

data[[\'日期\',\'星期\']] = data[\'日期\'].str.split(\' \',expand=True,n=1)
data

 

去除多余字符

data[[\'最高温度\',\'最低温度\']] = data[[\'最高温度\',\'最低温度\']].apply(lambda x: x.str.replace(\'°\',\'\'))
data.head()

 

北上广深2021年10月份天气热力图分布

import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import seaborn as sns

#设置全局默认字体 为 雅黑
plt.rcParams[\'font.family\'] = [\'Microsoft YaHei\'] 
# 设置全局轴标签字典大小
plt.rcParams[\"axes.labelsize\"] = 14  
# 设置背景
sns.set_style(\"darkgrid\",{\"font.family\":[\'Microsoft YaHei\', \'SimHei\']})  
# 设置画布长宽 和 dpi
plt.figure(figsize=(18,8),dpi=100)
# 自定义色卡
cmap = mcolors.LinearSegmentedColormap.from_list(\"n\",[\'#95B359\',\'#D3CF63\',\'#E0991D\',\'#D96161\',\'#A257D0\',\'#7B1216\']) 
# 绘制热力图

ax = sns.heatmap(data_pivot, cmap=cmap, vmax=30, 
                 annot=True, # 热力图上显示数值
                 linewidths=0.5,
                ) 
# 将x轴刻度放在最上面
ax.xaxis.set_ticks_position(\'top\') 
plt.title(\'北京最近10个月天气分布\',fontsize=16) #图片标题文本和字体大小
plt.show()

 



北京2021年每日最高最低温度变化

color0 = [\'#FF76A2\',\'#24ACE6\']
color_js0 = \"\"\"new echarts.graphic.LinearGradient(0, 1, 0, 0,
    [{offset: 0, color: \'#FFC0CB\'}, {offset: 1, color: \'#ed1941\'}], false)\"\"\"
color_js1 = \"\"\"new echarts.graphic.LinearGradient(0, 1, 0, 0,
    [{offset: 0, color: \'#FFFFFF\'}, {offset: 1, color: \'#009ad6\'}], false)\"\"\"

tl = Timeline()
for i in range(0,len(data_bj)):
    coordy_high = list(data_bj[\'最高温度\'])[i]
    coordx = list(data_bj[\'日期\'])[i]
    coordy_low = list(data_bj[\'最低温度\'])[i]
    x_max = list(data_bj[\'日期\'])[i]+datetime.timedelta(days=10)
    y_max = int(max(list(data_bj[\'最高温度\'])[0:i+1]))+3
    y_min = int(min(list(data_bj[\'最低温度\'])[0:i+1]))-3
    title_date = list(data_bj[\'日期\'])[i].strftime(\'%Y-%m-%d\')
    c = (
        Line(
            init_opts=opts.InitOpts(
            theme=\'dark\',
            #设置动画
            animation_opts=opts.AnimationOpts(animation_delay_update=800),#(animation_delay=1000, animation_easing=\"elasticOut\"),
            #设置宽度、高度
            width=\'1500px\',
            height=\'900px\', )
        )
        .add_xaxis(list(data_bj[\'日期\'])[0:i])
        .add_yaxis(
            series_name=\"\",
            y_axis=list(data_bj[\'最高温度\'])[0:i], is_smooth=True,is_symbol_show=False,
            linestyle_opts={
                   \'normal\': {
                       \'width\': 3,
                       \'shadowColor\': \'rgba(0, 0, 0, 0.5)\',
                       \'shadowBlur\': 5,
                       \'shadowOffsetY\': 10,
                       \'shadowOffsetX\': 10,
                       \'curve\': 0.5,
                       \'color\': JsCode(color_js0)
                   }
               },
            itemstyle_opts={
            \"normal\": {
                \"color\": JsCode(
                    \"\"\"new echarts.graphic.LinearGradient(0, 0, 0, 1, [{
                offset: 0,
                color: \'#ed1941\'
            }, {
                offset: 1,
                color: \'#009ad6\'
            }], false)\"\"\"
                ),
                \"barBorderRadius\": [45, 45, 45, 45],
                \"shadowColor\": \"rgb(0, 160, 221)\",
            }
        },

        )
        .add_yaxis(
            series_name=\"\",
            y_axis=list(data_bj[\'最低温度\'])[0:i], is_smooth=True,is_symbol_show=False,
#             linestyle_opts=opts.LineStyleOpts(color=color0[1],width=3),
            itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_js1)),
            linestyle_opts={
                   \'normal\': {
                       \'width\': 3,
                       \'shadowColor\': \'rgba(0, 0, 0, 0.5)\',
                       \'shadowBlur\': 5,
                       \'shadowOffsetY\': 10,
                       \'shadowOffsetX\': 10,
                       \'curve\': 0.5,
                       \'color\': JsCode(color_js1)
                   }
               },
        )
        .set_global_opts(
            title_opts=opts.TitleOpts(\"北京2021年每日最高最低温度变化\\n\\n{}\".format(title_date),pos_left=330,padding=[30,20]),
            xaxis_opts=opts.AxisOpts(type_=\"time\",max_=x_max),#, interval=10,min_=i-5,split_number=20,axistick_opts=opts.AxisTickOpts(length=2500),axisline_opts=opts.AxisLineOpts(linestyle_opts=opts.LineStyleOpts(color=\"grey\"))
            yaxis_opts=opts.AxisOpts(min_=y_min,max_=y_max),#坐标轴颜色,axisline_opts=opts.AxisLineOpts(linestyle_opts=opts.LineStyleOpts(color=\"grey\"))
        )
    )
    tl.add(c, \"{}\".format(list(data_bj[\'日期\'])[i]))
    tl.add_schema(
        axis_type=\'time\',
        play_interval=100,  # 表示播放的速度
        pos_bottom=\"-29px\",
        is_loop_play=False, # 是否循环播放
        width=\"780px\",
        pos_left=\'30px\',
        is_auto_play=True,  # 是否自动播放。
        is_timeline_show=False)
tl.render_notebook()

 

北上广深10月份每日最高气温变化

# 背景色
background_color_js = (
    \"new echarts.graphic.LinearGradient(0, 0, 0, 1, \"
    \"[{offset: 0, color: \'#c86589\'}, {offset: 1, color: \'#06a7ff\'}], false)\"
)

# 线条样式
linestyle_dic = { \'normal\': {
                    \'width\': 4,  
                    \'shadowColor\': \'#696969\', 
                    \'shadowBlur\': 10,  
                    \'shadowOffsetY\': 10,  
                    \'shadowOffsetX\': 10,  
                    }
                }
    
timeline = Timeline(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js),
                                            width=\'980px\',height=\'600px\'))


bj, gz, sh, sz= [], [], [], []
all_max = []
x_data = data_10[data_10[\'城市\'] == \'北京\'][\'\'].tolist()
for d_time in range(len(x_data)):
    bj.append(data_10[(data_10[\'\'] == x_data[d_time]) & (data_10[\'城市\']==\'北京\')][\"最高温度\"].values.tolist()[0])
    gz.append(data_10[(data_10[\'\'] == x_data[d_time]) & (data_10[\'城市\']==\'广州\')][\"最高温度\"].values.tolist()[0])
    sh.append(data_10[(data_10[\'\'] == x_data[d_time]) & (data_10[\'城市\']==\'上海\')][\"最高温度\"].values.tolist()[0])
    sz.append(data_10[(data_10[\'\'] == x_data[d_time]) & (data_10[\'城市\']==\'深圳\')][\"最高温度\"].values.tolist()[0])
    
    line = (
        Line(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js),
                                     width=\'980px\',height=\'600px\'))
        .add_xaxis(
            x_data,
                  )
        
        .add_yaxis(
            \'北京\',
            bj,
            symbol_size=5,
            is_smooth=True,
            is_hover_animation=True,
            label_opts=opts.LabelOpts(is_show=False),
        )
  
        .add_yaxis(
            \'广州\',
            gz,
            symbol_size=5,
            is_smooth=True,
            is_hover_animation=True,
            label_opts=opts.LabelOpts(is_show=False),
        )
 
        .add_yaxis(
            \'上海\',
            sh,
            symbol_size=5,
            is_smooth=True,
            is_hover_animation=True,
            label_opts=opts.LabelOpts(is_show=False),
            
        )
 
        .add_yaxis(
            \'深圳\',
            sz,
            symbol_size=5,
            is_smooth=True,
            is_hover_animation=True,
            label_opts=opts.LabelOpts(is_show=False),
            
        )
        
        .set_series_opts(linestyle_opts=linestyle_dic)
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title=\'北上广深10月份最高气温变化趋势\',
                pos_left=\'center\',
                pos_top=\'2%\',
                title_textstyle_opts=opts.TextStyleOpts(color=\'#DC143C\', font_size=20)),
            
            tooltip_opts=opts.TooltipOpts(
                trigger=\"axis\",
                axis_pointer_type=\"cross\",
                background_color=\"rgba(245, 245, 245, 0.8)\",
                border_width=1,
                border_color=\"#ccc\",
                textstyle_opts=opts.TextStyleOpts(color=\"#000\"),
        ),
            xaxis_opts=opts.AxisOpts(
#                 axislabel_opts=opts.LabelOpts(font_size=14, color=\'red\'),
#                 axisline_opts=opts.AxisLineOpts(is_show=True,
#                 linestyle_opts=opts.LineStyleOpts(width=2, color=\'#DB7093\'))
                is_show = False
            ),
                
            
            yaxis_opts=opts.AxisOpts(
                name=\'最高气温\',            
                is_scale=True,
#                 min_= int(min([gz[d_time],sh[d_time],sz[d_time],bj[d_time]])) - 10,
                max_= int(max([gz[d_time],sh[d_time],sz[d_time],bj[d_time]])) + 10,
                name_textstyle_opts=opts.TextStyleOpts(font_size=16,font_weight=\'bold\',color=\'#5470c6\'),
                axislabel_opts=opts.LabelOpts(font_size=13,color=\'#5470c6\'),
                splitline_opts=opts.SplitLineOpts(is_show=True, 
                                                  linestyle_opts=opts.LineStyleOpts(type_=\'dashed\')),
                axisline_opts=opts.AxisLineOpts(is_show=True,
                                        linestyle_opts=opts.LineStyleOpts(width=2, color=\'#5470c6\'))
            ),
            legend_opts=opts.LegendOpts(is_show=True, pos_right=\'1%\', pos_top=\'2%\',
                                        legend_icon=\'roundRect\',orient = \'vertical\'),
        ))
    
    timeline.add(line, \'{}\'.format(x_data[d_time]))

timeline.add_schema(
    play_interval=1000,          # 轮播速度
    is_timeline_show=True,      # 是否显示 timeline 组件
    is_auto_play=True,          # 是否自动播放
    pos_left=\"0\",
    pos_right=\"0\"
)
timeline.render_notebook()

 


来源:https://www.cnblogs.com/qshhl/p/16426623.html
本站部分图文来源于网络,如有侵权请联系删除。

未经允许不得转载:百木园 » 近段时间天气暴热,所以采集北上广深去年天气数据,制作可视化图看下

相关推荐

  • 暂无文章