百木园-与人分享,
就是让自己快乐。

利用Python快速实现一个线程池,非常简单

雷猴啊,兄弟们!今天来展示一下如何用Python快速实现一个线程池。

 

一、序言

当有多个 IO 密集型的任务要被处理时,我们自然而然会想到多线程。但如果任务非常多,我们不可能每一个任务都启动一个线程去处理,这个时候最好的办法就是实现一个线程池,至于池子里面的线程数量可以根据业务场景进行设置。

比如我们实现一个有 10 个线程的线程池,这样可以并发地处理 10 个任务,每个线程将任务执行完之后,便去执行下一个任务。通过使用线程池,可以避免因线程创建过多而导致资源耗尽,而且任务在执行时的生命周期也可以很好地把控。

而线程池的实现方式也很简单,但这里我们不打算手动实现,因为 Python 提供了一个标准库 concurrent.futures,已经内置了对线程池的支持。所以本篇文章,我们就来详细介绍一下该模块的用法。

二、正文

1、Future 对象

当我们往线程池里面提交一个函数时,会分配一个线程去执行,同时立即返回一个 Future 对象。通过 Future 对象可以监控函数的执行状态,有没有出现异常,以及有没有执行完毕等等。如果函数执行完毕,内部便会调用 future.set_result 将返回值设置到 future 里面,然后外界便可调用 future.result 拿到返回值。

除此之外 future 还可以绑定回调,一旦函数执行完毕,就会以 future 为参数,自动触发回调。所以 future 被称为未来对象,可以把它理解为函数的一个容器,当我们往线程池提交一个函数时,会立即创建相应的 future 然后返回。函数的执行状态什么的,都通过 future 来查看,当然也可以给它绑定一个回调,在函数执行完毕时自动触发。

那么下面我们就来看一下 future 的用法,文字的话理解起来可能有点枯燥。

将函数提交到线程池里面运行时,会立即返回一个对象
这个对象就叫做 Future 对象,里面包含了函数的执行状态等等
当然我们也可以手动创建一个Future对象。

from concurrent.futures import Future

# 创建 Future 对象 future
future = Future()

# 给 future 绑定回调
# Python学习交流群: 279199867
def callback(f: Future):
    print(\"当set_result的时候会执行回调,result:\",
          f.result())

future.add_done_callback(callback)
# 通过 add_done_callback 方法即可给 future 绑定回调
# 调用的时候会自动将 future 作为参数
# 如果需要多个参数,那么就使用偏函数

# 回调函数什么时候执行呢?
# 显然是当 future 执行 set_result 的时候
# 如果 future 是向线程池提交函数时返回的
# 那么当函数执行完毕时会自动执行 future.set_result(xx)
# 并将自身的返回设置进去
# 而这里的 future 是我们手动创建的,因此需要手动执行
future.set_result(\"嘿嘿\")

 

 

当set_result的时候会执行回调,result: 嘿嘿

需要注意的是:只能执行一次 set_result,但是可以多次调用 result 获取结果。

from concurrent.futures import Future

future = Future()
future.set_result(\"哼哼\")

print(future.result())  # 哼哼
print(future.result())  # 哼哼
print(future.result())  # 哼哼

 

执行 future.result() 之前一定要先 set_result,否则会一直处于阻塞状态。当然 result 方法还可以接收一个 timeout 参数,表示超时时间,如果在指定时间内没有获取到值就会抛出异常。

2、提交函数自动创建 Future 对象

我们上面是手动创建的 Future 对象,但工作中很少会手动创建。我们将函数提交到线程池里面运行的时候,会自动创建 Future 对象并返回。这个 Future 对象里面就包含了函数的执行状态,比如此时是处于暂停、运行中还是完成等等,并且函数在执行完毕之后,还会调用 future.set_result 将自身的返回值设置进去。

from concurrent.futures import ThreadPoolExecutor
import time

def task(name, n):
    time.sleep(n)
    return f\"{name} 睡了 {n} 秒\"

# 创建一个线程池
# 里面还可以指定 max_workers 参数,表示最多创建多少个线程
# 如果不指定,那么每提交一个函数,都会为其创建一个线程
executor = ThreadPoolExecutor()

# 通过 submit 即可将函数提交到线程池,一旦提交,就会立刻运行
# 因为开启了一个新的线程,主线程会继续往下执行
# 至于 submit 的参数,按照函数名,对应参数提交即可
# 切记不可写成task(\"古明地觉\", 3),这样就变成调用了
future = executor.submit(task, \"屏幕前的你\", 3)

# 由于函数里面出现了 time.sleep,并且指定的 n 是 3
# 所以函数内部会休眠 3 秒,显然此时处于运行状态
print(future)
\"\"\"
<Future at 0x7fbf701726d0 state=running>
\"\"\"

# 我们说 future 相当于一个容器,包含了内部函数的执行状态
# 函数是否正在运行中
print(future.running())
\"\"\"
True
\"\"\"
# 函数是否执行完毕
print(future.done())
\"\"\"
False
\"\"\"

# 主程序也 sleep 3 秒
time.sleep(3)

# 显然此时函数已经执行完毕了
# 并且打印结果还告诉我们返回值类型是 str
print(future)
\"\"\"
<Future at 0x7fbf701726d0 state=finished returned str>
\"\"\"

print(future.running())
\"\"\"
False
\"\"\"
print(future.done())
\"\"\"
True
\"\"\"

# 函数执行完毕时,会将返回值设置在 future 里
# 也就是说一旦执行了 future.set_result
# 那么就表示函数执行完毕了,然后外界可以调用 result 拿到返回值
print(future.result())
\"\"\"
屏幕前的你 睡了 3 秒
\"\"\"

 

这里再强调一下 future.result(),这一步是会阻塞的,举个例子:

# 提交函数
future = executor.submit(task, \"屏幕前的你\", 3)
start = time.perf_counter()
future.result()
end = time.perf_counter()
print(end - start)  # 3.00331525

 

可以看到,future.result() 这一步花了将近 3s。其实也不难理解,future.result() 是干嘛的?就是为了获取函数的返回值,可函数都还没有执行完毕,它又从哪里获取呢?所以只能先等待函数执行完毕,将返回值通过 set_result 设置到 future 里面之后,外界才能调用 future.result() 获取到值。

如果不想一直等待的话,那么在获取值的时候可以传入一个超时时间。

from concurrent.futures import (
    ThreadPoolExecutor,
    TimeoutError
)
import time

def task(name, n):
    time.sleep(n)
    return f\"{name} 睡了 {n} 秒\"

executor = ThreadPoolExecutor()
future = executor.submit(task, \"屏幕前的你\", 3)
try:
    # 1 秒之内获取不到值,抛出 TimeoutError
    res = future.result(1)
except TimeoutError:
    pass

# 再 sleep 2 秒,显然函数执行完毕了
time.sleep(2)
# 获取返回值
print(future.result())
\"\"\"
屏幕前的你 睡了 3 秒
\"\"\"

 

当然啦,这么做其实还不够智能,因为我们不知道函数什么时候执行完毕。所以最好的办法还是绑定一个回调,当函数执行完毕时,自动触发回调。

from concurrent.futures import ThreadPoolExecutor
import time

def task(name, n):
    time.sleep(n)
    return f\"{name} 睡了 {n} 秒\"

def callback(f):
    print(f.result())

executor = ThreadPoolExecutor()
future = executor.submit(task, \"屏幕前的你\", 3)
# 绑定回调,3 秒之后自动调用
future.add_done_callback(callback)
\"\"\"
屏幕前的你 睡了 3 秒
\"\"\"

 

需要注意的是,在调用 submit 方法之后,提交到线程池的函数就已经开始执行了。而不管函数有没有执行完毕,我们都可以给对应的 future 绑定回调。

如果函数完成之前添加回调,那么会在函数完成后触发回调。如果函数完成之后添加回调,由于函数已经完成,代表此时的 future 已经有值了,或者说已经 set_result 了,那么会立即触发回调。

3、future.set_result 到底干了什么事情

当函数执行完毕之后,会执行 set_result,那么这个方法到底干了什么事情呢?

我们看到 future 有两个被保护的属性,分别是 _result 和 _state。显然 _result 用于保存函数的返回值,而 future.result() 本质上也是返回 _result 属性的值。而 _state 属性则用于表示函数的执行状态,初始为 PENDING,执行中为 RUNING,执行完毕时被设置为 FINISHED。

调用 future.result() 的时候,会判断 _state 的属性,如果还在执行中就一直等待。当 _state 为 FINISHED 的时候,就返回 _result 属性的值。

4、提交多个函数

我们上面每次只提交了一个函数,但其实可以提交任意多个,我们来看一下:

from concurrent.futures import ThreadPoolExecutor
import time

def task(name, n):
    time.sleep(n)
    return f\"{name} 睡了 {n} 秒\"

executor = ThreadPoolExecutor()
futures = [executor.submit(task, \"屏幕前的你\", 3),
           executor.submit(task, \"屏幕前的你\", 4),
           executor.submit(task, \"屏幕前的你\", 1)]
# 此时都处于running
print(futures)
\"\"\"
[<Future at 0x1b5ff622550 state=running>,
 <Future at 0x1b5ff63ca60 state=running>, 
 <Future at 0x1b5ff63cdf0 state=running>]
\"\"\"

time.sleep(3)
# 主程序 sleep 3s 后
# futures[0]和futures[2]处于 finished
# futures[1]仍处于 running
print(futures)
\"\"\"
[<Future at 0x1b5ff622550 state=running>, 
 <Future at 0x1b5ff63ca60 state=running>, 
 <Future at 0x1b5ff63cdf0 state=finished returned str>]
\"\"\"

 

如果是多个函数,要如何拿到返回值呢?很简单,遍历 futures 即可。

executor = ThreadPoolExecutor()
futures = [executor.submit(task, \"屏幕前的你\", 5),
           executor.submit(task, \"屏幕前的你\", 2),
           executor.submit(task, \"屏幕前的你\", 4),
           executor.submit(task, \"屏幕前的你\", 3),
           executor.submit(task, \"屏幕前的你\", 6)]

for future in futures:
    print(future.result())
\"\"\"
屏幕前的你 睡了 5 秒
屏幕前的你 睡了 2 秒
屏幕前的你 睡了 4 秒
屏幕前的你 睡了 3 秒
屏幕前的你 睡了 6 秒
\"\"\"

 

这里面有一些值得说一说的地方,首先 futures 里面有 5 个 future,记做 future1, future2, future3, future4, future5。

当使用 for 循环遍历的时候,实际上会依次遍历这 5 个 future,所以返回值的顺序就是我们添加的函数的顺序。由于 future1 对应的函数休眠了 5s,那么必须等到 5s 后,future1 里面才会有值。

但这五个函数是并发执行的,future2, future3, future4 由于只休眠了 2s, 4s, 3s,所以肯定会先执行完毕,然后执行 set_result,将返回值设置到对应的 future 里。

但 Python 的 for 循环不可能在第一次迭代还没有结束,就去执行第二次迭代。因为 futures 里面的几个 future 的顺序已经一开始就被定好了,只有当第一个 future.result() 执行完成之后,才会执行第二个 future.result(),以及第三个、第四个。

因此即便后面的函数已经执行完毕,但由于 for 循环的顺序,也只能等着,直到前面的 future.result() 执行完毕。所以当第一个 future.result() 结束时,后面三个 future.result() 会立刻输出,因为它们内部的函数已经执行结束了。

而最后一个 future,由于内部函数 sleep 了 6 秒,因此要再等待 1 秒,才会打印 future.result()。

5、使用 map 来提交多个函数

使用 submit 提交函数会返回一个 future,并且还可以给 future 绑定一个回调。但如果不关心回调的话,那么还可以使用 map 进行提交。

executor = ThreadPoolExecutor()
# map 内部也是使用了 submit
results = executor.map(task,
                       [\"屏幕前的你\"] * 3,
                       [3, 1, 2])
# 并且返回的是迭代器
print(results)
\"\"\"
<generator object ... at 0x0000022D78EFA970>
\"\"\"

# 此时遍历得到的是不再是 future
# 而是 future.result()
for result in results:
    print(result)
\"\"\"
屏幕前的你 睡了 3 秒
屏幕前的你 睡了 1 秒
屏幕前的你 睡了 2 秒
\"\"\"

 

可以看到,当使用for循环的时候,map 执行的逻辑和 submit 是一样的。唯一的区别是,此时不需要再调用 result 了,因为返回的就是函数的返回值。

或者我们直接调用 list 也行。

executor = ThreadPoolExecutor()
results = executor.map(task,
                       [\"屏幕前的你\"] * 3,
                       [3, 1, 2])
print(list(results))
\"\"\"
[\'屏幕前的你 睡了 3 秒\', 
 \'屏幕前的你 睡了 1 秒\', 
 \'屏幕前的你 睡了 2 秒\']
\"\"\"

 

results 是一个生成器,调用 list 的时候会将里面的值全部产出。由于 map 内部还是使用的 submit,然后通过 future.result() 拿到返回值,而耗时最长的函数需要 3 秒,因此这一步会阻塞 3 秒。3 秒过后,会打印所有函数的返回值。

6、按照顺序等待执行

上面在获取返回值的时候,是按照函数的提交顺序获取的。如果我希望哪个函数先执行完毕,就先获取哪个函数的返回值,该怎么做呢?

from concurrent.futures import (
    ThreadPoolExecutor,
    as_completed
)
import time

def task(name, n):
    time.sleep(n)
    return f\"{name} 睡了 {n} 秒\"

executor = ThreadPoolExecutor()
futures = [executor.submit(task, \"屏幕前的你\", 5),
           executor.submit(task, \"屏幕前的你\", 2),
           executor.submit(task, \"屏幕前的你\", 1),
           executor.submit(task, \"屏幕前的你\", 3),
           executor.submit(task, \"屏幕前的你\", 4)]
for future in as_completed(futures):
    print(future.result())
\"\"\"
屏幕前的你 睡了 1 秒
屏幕前的你 睡了 2 秒
屏幕前的你 睡了 3 秒
屏幕前的你 睡了 4 秒
屏幕前的你 睡了 5 秒
\"\"\"

 

此时谁先完成,谁先返回。

7、取消一个函数的执行

我们通过 submit 可以将函数提交到线程池中执行,但如果我们想取消该怎么办呢?

executor = ThreadPoolExecutor()
future1 = executor.submit(task, \"屏幕前的你\", 1)
future2 = executor.submit(task, \"屏幕前的你\", 2)
future3 = executor.submit(task, \"屏幕前的你\", 3)
# 取消函数的执行
# 会将 future 的 _state 属性设置为 CANCELLED
future3.cancel()
# 查看是否被取消
print(future3.cancelled())  # False

 

问题来了,调用 cancelled 方法的时候,返回的是False,这是为什么?很简单,因为函数已经被提交到线程池里面了,函数已经运行了。而只有在还没有运行时,取消才会成功。

可这不矛盾了吗?函数一旦提交就会运行,只有不运行才会取消成功,这怎么办?还记得线程池的一个叫做 max_workers 的参数吗?用来控制线程池内的线程数量,我们可以将最大的线程数设置为2,那么当第三个函数进去的时候,就不会执行了,而是处于暂停状态。

executor = ThreadPoolExecutor(max_workers=2)
future1 = executor.submit(task, \"屏幕前的你\", 1)
future2 = executor.submit(task, \"屏幕前的你\", 2)
future3 = executor.submit(task, \"屏幕前的你\", 3)
# 如果池子里可以创建空闲线程
# 那么函数一旦提交就会运行,状态为 RUNNING
print(future1._state)  # RUNNING
print(future2._state)  # RUNNING
# 但 future3 内部的函数还没有运行
# 因为池子里无法创建新的空闲线程了,所以状态为 PENDING
print(future3._state)  # PENDING
# 取消函数的执行,前提是函数没有运行
# 会将 future 的 _state 属性设置为 CANCELLED
future3.cancel()
# 查看是否被取消
print(future3.cancelled())  # True
print(future3._state)  # CANCELLED

 

在启动线程池的时候,肯定是需要设置容量的,不然处理几千个函数要开启几千个线程吗。另外当函数被取消了,就不可以再调用 future.result() 了,否则的话会抛出 CancelledError。

8、函数执行时出现异常

我们前面的逻辑都是函数正常执行的前提下,但天有不测风云,如果函数执行时出现异常了该怎么办?

from concurrent.futures import ThreadPoolExecutor

def task1():
    1 / 0

def task2():
    pass


executor = ThreadPoolExecutor(max_workers=2)
future1 = executor.submit(task1)
future2 = executor.submit(task2)
print(future1)
print(future2)
\"\"\"
<Future at 0x7fe3e00f9e50 state=finished raised ZeroDivisionError>
<Future at 0x7fe3e00f9eb0 state=finished returned NoneType>
\"\"\"

# 结果显示 task1 函数执行出现异常了
# 那么这个异常要怎么获取呢?
print(future1.exception())
print(future1.exception().__class__)
\"\"\"
division by zero
<class \'ZeroDivisionError\'>
\"\"\"

# 如果执行没有出现异常,那么 exception 方法返回 None
print(future2.exception())  # None

# 注意:如果函数执行出现异常了
# 那么调用 result 方法会将异常抛出来
future1.result()
\"\"\"
Traceback (most recent call last):
  File \"...\", line 4, in task1
    1 / 0
ZeroDivisionError: division by zero
\"\"\"

 

出现异常时,调用 future.set_exception 将异常设置到 future 里面,而 future 有一个 _exception 属性,专门保存设置的异常。当调用 future.exception() 时,也会直接返回 _exception 属性的值。

9、等待所有函数执行完毕

假设我们往线程池提交了很多个函数,如果希望提交的函数都执行完毕之后,主程序才能往下执行,该怎么办呢?其实方案有很多:

第一种:

from concurrent.futures import ThreadPoolExecutor
import time

def task(n):
    time.sleep(n)
    return f\"sleep {n}\"

executor = ThreadPoolExecutor()

future1 = executor.submit(task, 5)
future2 = executor.submit(task, 2)
future3 = executor.submit(task, 4)

# 这里是不会阻塞的
print(\"start\")
# 遍历所有的 future,并调用其 result 方法
# 这样就会等到所有的函数都执行完毕之后才会往下走
for future in [future1, future2, future3]:
    print(future.result())
print(\"end\")
\"\"\"
start
sleep 5
sleep 2
sleep 4
end
\"\"\"

 

第二种:

from concurrent.futures import (
    ThreadPoolExecutor,
    wait
)
import time

def task(n):
    time.sleep(n)
    return f\"sleep {n}\"

executor = ThreadPoolExecutor()

future1 = executor.submit(task, 5)
future2 = executor.submit(task, 2)
future3 = executor.submit(task, 4)

# return_when 有三个可选参数
# FIRST_COMPLETED:当任意一个任务完成或者取消
# FIRST_EXCEPTION:当任意一个任务出现异常
#                  如果都没出现异常等同于ALL_COMPLETED
# ALL_COMPLETED:所有任务都完成,默认是这个值
fs = wait([future1, future2, future3],
          return_when=\"ALL_COMPLETED\")
# 此时返回的fs是DoneAndNotDoneFutures类型的namedtuple
# 里面有两个值,一个是done,一个是not_done
print(fs.done)
\"\"\"
{<Future at 0x1df1400 state=finished returned str>, 
 <Future at 0x2f08e48 state=finished returned str>, 
 <Future at 0x9f7bf60 state=finished returned str>}
\"\"\"

print(fs.not_done)
\"\"\"
set()
\"\"\"
for f in fs.done:
    print(f.result())
\"\"\"
start
sleep 5
sleep 2
sleep 4
end
\"\"\"

 

第三种:

# 使用上下文管理
with ThreadPoolExecutor() as executor:
    future1 = executor.submit(task, 5)
    future2 = executor.submit(task, 2)
    future3 = executor.submit(task, 4)

# 所有函数执行完毕(with语句结束)后才会往下执行

 

第四种:

executor = ThreadPoolExecutor()

future1 = executor.submit(task, 5)
future2 = executor.submit(task, 2)
future3 = executor.submit(task, 4)
# 所有函数执行结束后,才会往下执行
executor.shutdown()

 

三、小结

如果我们需要启动多线程来执行函数的话,那么不妨使用线程池。每调用一个函数就从池子里面取出一个线程,函数执行完毕就将线程放回到池子里以便其它函数执行。如果池子里面空了,或者说无法创建新的空闲线程,那么接下来的函数就只能处于等待状态了。

最后,concurrent.futures 不仅可以用于实现线程池,还可以用于实现进程池。两者的 API 是一样的:

from concurrent.futures import ProcessPoolExecutor
import time

def task(n):
    time.sleep(n)
    return f\"sleep {n}\"

executor = ProcessPoolExecutor()
# Windows 上需要加上这一行
if __name__ == \'__main__\':
    future1 = executor.submit(task, 5)
    future2 = executor.submit(task, 2)
    future3 = executor.submit(task, 4)
    executor.shutdown()
    print(future1.result())
    print(future2.result())
    print(future3.result())
\"\"\"
sleep 5
sleep 2
sleep 4
\"\"\"    

 

线程池和进程池的 API 是一致的,但工作中很少会创建进程池。

兄弟们今天的分享就到这,债见!

文章不过瘾?试试看视频吧!

Python爬虫入门到实战全集100集教程:代码总是学完就忘记?100个爬虫实战项目!让你沉迷学习丨学以致用丨下一个Python大神就是你!

Python tkinter 合集:全网最全python tkinter教程!包含所有知识点!轻松做出好看的tk程序!


来源:https://www.cnblogs.com/hahaa/p/16547372.html
本站部分图文来源于网络,如有侵权请联系删除。

未经允许不得转载:百木园 » 利用Python快速实现一个线程池,非常简单

相关推荐

  • 暂无文章