百木园-与人分享,
就是让自己快乐。

Python图像处理丨图像的灰度线性变换

摘要:本文主要讲解灰度线性变换。

本文分享自华为云社区《[Python图像处理] 十五.图像的灰度线性变换》,作者:eastmount。

一.图像灰度线性变换原理

图像的灰度线性变换是通过建立灰度映射来调整原始图像的灰度,从而改善图像的质量,凸显图像的细节,提高图像的对比度。灰度线性变换的计算公式如下所示:

Python图像处理丨图像的灰度线性变换

该公式中DB表示灰度线性变换后的灰度值,DA表示变换前输入图像的灰度值,α和b为线性变换方程f(D)的参数,分别表示斜率和截距。

  • 当α=1,b=0时,保持原始图像
  • 当α=1,b!=0时,图像所有的灰度值上移或下移
  • 当α=-1,b=255时,原始图像的灰度值反转
  • 当α>1时,输出图像的对比度增强
  • 当0<α<1时,输出图像的对比度减小
  • 当α<0时,原始图像暗区域变亮,亮区域变暗,图像求补

如图所示,显示了图像的灰度线性变换对应的效果图。

Python图像处理丨图像的灰度线性变换

二.图像灰度上移变换

该算法将实现图像灰度值的上移,从而提升图像的亮度,其实现代码如下所示。由于图像的灰度值位于0至255区间之内,所以需要对灰度值进行溢出判断。

# -*- coding: utf-8 -*-
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread(\'miao.png\')
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]
#创建一幅图像
result = np.zeros((height, width), np.uint8)
#图像灰度上移变换 DB=DA+50
for i in range(height):
 for j in range(width):
 if (int(grayImage[i,j]+50) > 255):
            gray = 255
 else:
            gray = int(grayImage[i,j]+50)
        result[i,j] = np.uint8(gray)
#显示图像
cv2.imshow(\"Gray Image\", grayImage)
cv2.imshow(\"Result\", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

其输出结果如下图所示,图像的所有灰度值上移50,图像变得更白了。注意,纯黑色对应的灰度值为0,纯白色对应的灰度值为255。

Python图像处理丨图像的灰度线性变换

三.图像对比度增强变换

该算法将增强图像的对比度,Python实现代码如下所示:

# -*- coding: utf-8 -*-
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread(\'miao.png\')
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]
#创建一幅图像
result = np.zeros((height, width), np.uint8)
#图像对比度增强变换 DB=DA*1.5
for i in range(height):
 for j in range(width):
 if (int(grayImage[i,j]*1.5) > 255):
            gray = 255
 else:
            gray = int(grayImage[i,j]*1.5)
        result[i,j] = np.uint8(gray)
#显示图像
cv2.imshow(\"Gray Image\", grayImage)
cv2.imshow(\"Result\", result)

其输出结果如下图所示,图像的所有灰度值增强1.5倍。

Python图像处理丨图像的灰度线性变换

四.图像对比度减弱变换

该算法将减弱图像的对比度,Python实现代码如下所示:

# -*- coding: utf-8 -*-
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread(\'miao.png\')
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]
#创建一幅图像
result = np.zeros((height, width), np.uint8)
#图像对比度减弱变换 DB=DA*0.8
for i in range(height):
 for j in range(width):
        gray = int(grayImage[i,j]*0.8)
        result[i,j] = np.uint8(gray)
#显示图像
cv2.imshow(\"Gray Image\", grayImage)
cv2.imshow(\"Result\", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

其输出结果如下图所示,图像的所有灰度值减弱,图像变得更暗。

Python图像处理丨图像的灰度线性变换

五.图像灰度反色变换

反色变换又称为线性灰度求补变换,它是对原图像的像素值进行反转,即黑色变为白色,白色变为黑色的过程。其Python实现代码如下所示:

# -*- coding: utf-8 -*-
import cv2  
import numpy as np  
import matplotlib.pyplot as plt
#读取原始图像
img = cv2.imread(\'miao.png\')
#图像灰度转换
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
#获取图像高度和宽度
height = grayImage.shape[0]
width = grayImage.shape[1]
#创建一幅图像
result = np.zeros((height, width), np.uint8)
#图像灰度反色变换 DB=255-DA
for i in range(height):
 for j in range(width):
        gray = 255 - grayImage[i,j]
        result[i,j] = np.uint8(gray)
#显示图像
cv2.imshow(\"Gray Image\", grayImage)
cv2.imshow(\"Result\", result)
#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

其输出结果如下图所示,图像处理前后的灰度值是互补的。

Python图像处理丨图像的灰度线性变换

图像灰度反色变换在医学图像处理中有一定的应用,如下图所示:

Python图像处理丨图像的灰度线性变换

PS:文章参考自己以前系列图像处理文章及OpenCV库函数,同时参考如下文献:

  • 杨秀璋等. 基于苗族服饰的图像锐化和边缘提取技术研究[J]. 现代计算机,2018(10).
  • 《数字图像处理》(第3版),冈萨雷斯著,阮秋琦译,电子工业出版社,2013年.
  • 《数字图像处理学》(第3版),阮秋琦,电子工业出版社,2008年,北京.
  • 《OpenCV3编程入门》,毛星云,冷雪飞,电子工业出版社,2015.
  • [数字图像处理] 五.MFC图像点运算之灰度线性变化、灰度非线性变化、阈值化和均衡化处理详解

 

点击关注,第一时间了解华为云新鲜技术~


来源:https://www.cnblogs.com/huaweiyun/p/16630253.html
本站部分图文来源于网络,如有侵权请联系删除。

未经允许不得转载:百木园 » Python图像处理丨图像的灰度线性变换

相关推荐

  • 暂无文章